The influence of soil properties on the effectiveness of phenylphosphorodiamidate (PPD) in reducing ammonia volatilization from surface applied urea |
| |
Authors: | Catherine J. Watson |
| |
Affiliation: | (1) Food & Agricultural Chemistry Research Division, Department of Agriculture for Northern Ireland, Newforge Lane, BT9 5PX Belfast, Northern Ireland, UK |
| |
Abstract: | Urea can be an inefficient N source due to rapid hydrolysis by soil urease leading to NH3 volatilization. The current study investigated the effect of the urease inhibitor phenylphosphorodiamidate (PPD) incorporated at two concentrations (0.5% and 1% w/w) within the fertilizer granule on NH3 volatilization from surface applied urea. The daily rates of NH3 loss from 20 soils of widely differing properties from Northern Ireland were measured over 14 days using ventilated enclosures under simulated spring conditions. Cumulative loss rates were calculated and fitted to a logistic model from which total NH3 loss (Amax) and the time to maximum rate of loss (Tmax) were determined. Stepwise multiple linear regression analysis related the effectiveness of PPD in reducing NH3 volatilization from urea to soil properties.The total cumulative loss of ammonia from unamended urea varied from 0.37 to 29.2% depending on soil type. Ammonia volatilization appeared to be greatest on a soil with a high pH (R2 = 0.65), a low titratable acidity (TA) (R2 = 0.63) and a soil that was drying out (R2 = 0.50). Soil pH was negatively correlated with TA (r = –0.826, P < 0.001) suggesting that soils with a low TA may have received recent lime. Including cation exchange capacity (CEC) and % N as well as pH-KCl in the multiple linear regression equation explained 86% of the variance.The effectiveness of PPD in reducing Amax varied between 0% to 91% depending on soil type, the average over all 20 soils being 30 and 36% for 0.5% and 1% PPD respectively. The most important soil properties influencing the effectiveness of the urease inhibitor were soil pH-H2O and TA accounting for 33% and 29% of the variance respectively. PPD was less effective on a soil with a high pH and low TA. These were the soil conditions that led to high NH3 volatilization from unamended urea and may explain why PPD had limited success in reducing ammonia loss on these soils. Multiple linear regression analysis indicated that 75% of the variation in the % inhibition of NH3 loss by PPD could be significantly accounted for by pH-H2O, initial soil NO3--N concentration, % moisture content and % moisture loss.The delay in Tmax by PPD ranged from 0.19 to 7.93 days, the average over all 20 soils being 2.5 and 2.8 days for 0.5% and 1% PPD respectively. TA, % moisture content, urease activity and CEC were soil properties that significantly explained 83% of the variation in the % delay in Tmax by PPD in multiple linear regression analysis. However, none of these soil properties were significant on their own. As urea hydrolysis occurs rapidly in soil, delaying Tmax under field conditions would increase the chance of rain falling to move the urea below the soil surface and reduce NH3 volatilization. A urease inhibitor should be more effective than PPD on soils with a high pH and low TA to be successful in reducing high NH3 losses. |
| |
Keywords: | Urea ammonia volatilization urease inhibition soil properties phenylphosphorodiamidate granules |
本文献已被 SpringerLink 等数据库收录! |
|