首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于蜂群原理的划分聚类算法*
引用本文:刘雷,王洪国,邵增珍,尹会娟a. 一种基于蜂群原理的划分聚类算法*[J]. 计算机应用研究, 2011, 28(5): 1699-1702. DOI: 10.3969/j.issn.1001-3695.2011.05.030
作者姓名:刘雷  王洪国  邵增珍  尹会娟a
作者单位:1. 山东师范大学管理与经济学院,,济南,250014
2. 山东师范大学管理与经济学院,济南,250014;山东师范大学信息科学与工程学院,济南,250014
3. 山东师范大学信息科学与工程学院,济南,250014;山东省分布式计算机软件新技术重点实验室,济南,250014
4. 山东师范大学管理与经济学院,济南,250014
基金项目:山东省科技攻关项目 (2009GG10001008);济南市高校院所自主创新项目(200906001);山东省软科学研究计划项目(2009RKA285)
摘    要:针对现有的大部分划分聚类算法受聚类簇的个数K的限制,提出一种基于蜂群原理的划分聚类算法。该方法通过引入蜂群采蜜机制,将聚类中心视为食物源,通过寻找食物源的自组织过程来实现数据对象的聚集。在聚类的过程中引入紧密度函数来评价聚类中心(局部),引入分离度函数来确定最佳聚类簇的个数(全局)。与传统的划分聚类算法相比,本算法无须指定聚类个数即可实现聚类过程。通过仿真实验表明,本文提出的算法不但对最佳聚类数有良好的搜索能力,而且有较高的准确率:算法时间复杂度仅为O(n*k3)(k<
关 键 词:聚类; 划分聚类; 人工蜂群; 紧密度; 分离度
收稿时间:2010-09-30
修稿时间:2011-04-17

Partition clustering algorithm based on artificial bee colony principal
LIU Lei,WANG Hong-guo,SHAO Zeng-zhen,YIN Hui-juana. Partition clustering algorithm based on artificial bee colony principal[J]. Application Research of Computers, 2011, 28(5): 1699-1702. DOI: 10.3969/j.issn.1001-3695.2011.05.030
Authors:LIU Lei  WANG Hong-guo  SHAO Zeng-zhen  YIN Hui-juana
Affiliation:(1. a. School of Management & Economy; b. School of Information Science & Engineering, Shandong Normal University, Jinan 250014, China; 2. Shandong Provincial Key Laboratory for Distributed Computer Software Novel Technology, Jinan 250014, China)
Abstract:according to the drawback that most of these algorithms have the shortcoming that clustering results are limited by K value which is the number of clusters, this paper proposed a new partition clustering algorithm based on the principal of artificial bee colony. The clustering method introduces the mechanism of artificial bee colony collecting pollen and every clustering center will be considered as a food source.Then the process of gathering data objects will be achieved by the process of finding the food source. In the process of clustering, tightness function is proposed as the fitness to evaluate the cluster center(local) and separation function is introduced to determine the optimal number of clusters (global). Comapared to traditional partition clustering algorithms, this algorithm does not need the value K that is a given number of clusters to realize clustering process. Simulation results show that the algorithm not only can determine the best number of clusters, and can get a higher clustering accuracy. Furthermore, the time complexity of this algorithm is O(n*k3)(k<
Keywords:clustering   partition clustering   artificial bee colony(ABC)   tightness   separation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号