首页 | 本学科首页   官方微博 | 高级检索  
     

基于百度飞桨的面向黑暗环境人员行为检测与身份识别
作者姓名:杜闯  何赟泽  邓海平  常珊  王耀南
作者单位:1.湖南大学电气与信息工程学院
基金项目:2022 年 CCF-百度松果基金( CCF-BAIDU OF2022010)、湖南省重点研发计划( 2022GK2012)、湖南省自然科学基金重大项目 (2021JC0004)资助
摘    要:针对传统可见光在黑暗环境中难以实现人员行为检测与身份识别的问题,本文结合红外热成像技术基于百度飞桨深度 学习框架研究了一种面向黑暗环境的人员行为检测与身份识别算法。 首先经过实地采集,自主构建红外热成像人员行为数据 集总计 10 900 张 9 种行为类别以及双光人脸数据集总计 3 000 张 30 位人员。 针对行为检测方面,基于轻量化网络 PP-LCNet 改进 YOLOv5 骨干网络进行人员行为检测,大幅度减少模型参数并提高检测精度与推理速度。 针对人脸识别方面,引入 CycleGAN 算法改进 InsightFace 实现将红外人脸转化为可见光人脸进行身份识别,提高在黑暗环境下人脸识别准确率。 最后实 现红外人员行为检测网络与人脸识别网络的级联工作,在黑暗环境下可以实时行为检测与身份识别,具有很好的应用效果。 实 验结果表明,基于 PPLCNet 轻量化改进的 YOLOv5 相对于原网络模型参数减少 56. 4%,平均精度 mAP 由 89. 1%提高至 94. 7%, 推理速度由 68 提高至 101 fps;基于 CycleGAN 算法改进 InsightFace 相对于原网络黑暗环境下识别准确率由 84%提高至 99%。

关 键 词:黑暗环境  红外热成像  行为检测  跨模态人脸识别
点击此处可从《电子测量与仪器学报》浏览原始摘要信息
点击此处可从《电子测量与仪器学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号