关于二次非线性度达最大值的布尔函数的研究 |
| |
作者姓名: | 秦静 王爱云 |
| |
作者单位: | [1]山东大学数学与系统科学学院,山东省济南市250100 [2]山东师范大学数学系,山东省济南市250014 |
| |
摘 要: | 在密码学中,为抵抗二次逼近引入了二次bent函数、二阶Walsh谱与二次非线性度的概念,并得到了n元布尔函数的二次非线性度的最大值为2^n-1-2^n/2-1。二次bent函数的二次非线性度达到了这一最大值。因此,二次bent函数既可以抵抗线性逼近又可以抵抗二次逼近攻击,是具有优良密码学特性的函数。但本文利用矩阵运算、向量的内积运算及汉明重量证明了这类函数实际上是不存在的。
|
关 键 词: | 布尔函数 二阶Walsh谱 二次非线性度 汉明重量 二次bent函数 密码学 |
本文献已被 维普 等数据库收录! |
|