首页 | 本学科首页   官方微博 | 高级检索  
     

挖掘闭合模式的高性能算法
引用本文:刘君强,孙晓莹,庄越挺,潘云鹤. 挖掘闭合模式的高性能算法[J]. 软件学报, 2004, 15(1): 94-102
作者姓名:刘君强  孙晓莹  庄越挺  潘云鹤
作者单位:1. 杭州商学院,计算机信息工程学院,浙江,杭州,310035
2. 浙江大学,人工智能研究所,浙江,杭州,310027
基金项目:Supported by Zhejiang Provincial Natural Science Foundation of China under Grant No.602140 (浙江省自然科学基金); the National Natural Science Foundation of China under Grant No.60272031 (国家自然科学基金); the National Research Foundation for the Doctoral Program of Highe
摘    要:频繁闭合模式集惟一确定频繁模式完全集并且尺寸小得多,然而挖掘频繁闭合模式仍然是时间与存储开销很大的任务.提出一种高性能算法来解决这一难题.采用复合型频繁模式树来组织频繁模式集,存储开销较小.通过集成深度与宽度优先策略,伺机选择基于数组或基于树的模式支持子集表示形式,启发式运用非过滤虚拟投影或过滤型投影,实现复合型频繁模式树的快速生成.局部和全局剪裁方法有效地缩小了搜索空间.通过树生成与剪裁代价的平衡实现时间效率与可伸缩性最大化.实验表明,该算法时间效率比其他算法高5倍到3个数量级,空间可伸缩性最佳.它可以进一步应用到无冗余关联规则发现、序列分析等许多数据挖掘问题.

关 键 词:知识发现  数据挖掘  频繁闭合模式  关联规则
文章编号:1000-9825/2004/15(01)0094
收稿时间:2002-10-24
修稿时间:2003-09-05

Mining Frequent Closed Patterns by Adaptive Pruning
LIU Jun-Qiang,SUN Xiao-Ying,ZHUANG Yue-Ting and PAN Yun-He. Mining Frequent Closed Patterns by Adaptive Pruning[J]. Journal of Software, 2004, 15(1): 94-102
Authors:LIU Jun-Qiang  SUN Xiao-Ying  ZHUANG Yue-Ting  PAN Yun-He
Abstract:The set of frequent closed patterns determines exactly the complete set of all frequent patterns and is usually much smaller than the laster. Yet mining frequent closed patterns remains to be a memory and time consuming task. This paper tries to develop an efficient algorithm to solve this problem. The compound frequent item set tree is employed to organize the set of frequent patterns, which consumes much less memory than other structures. The tree is grown quickly by integrating depth first and breadth first search strategies, opportunistically choosing between two different structures to represent projected transaction subsets, and heuristically deciding to build unfiltered pseudo or filtered projections. Efficient pruning methods are used to reduce the search space. The balance of the efficiency and scalability of tree growth and pruning maximizes the performance. The experimental results show that the algorithm is a factor of five to three orders of magnitude more time efficient than several recently proposed algorithms, and is also the most scalable one. It can be used in the discovery of non-redundant association rules, sequence analysis, and many other data mining problems.
Keywords:knowledge discovery  data mining  frequent closed pattern  association rule
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《软件学报》浏览原始摘要信息
点击此处可从《软件学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号