Affiliation: | aDepartment of Polymer Science and Engineering, SAINT, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon 440-746, South Korea bDepartment of Materials Science and Engineering, Meijo University, 1-501, Shiogamaguchi, Tenpaku, Nagoya, Aichi 468-8502, Japan |
Abstract: | The multi-walled carbon nanotubes (MWNTs) were successfully embedded in the hexagonally-arranged silica tubular structure by the self-organization of two surfactant systems providing a MWNT-incorporated silica nancomposite template. The anionic surfactant (sodium dodecyl sulfate, SDS) adsorbed on the MWNT surfaces allowed the MWNTs to interact with the outer surface of the self-assembled non-ionic surfactant, poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) triblock copolymer. Due to the hydrophilic–hydrophilic interaction between the PEO blocks and the sulfate group of SDS, the MWNTs were most possibly surrounded by the outer wall of the SBA-15 hexagonal tubes aligning in the longitudinal and transverse directions to the silica tube direction. According to the interplanar distances, electron microscopy images, and N2 adsorption–desorption isotherms, the synthesized SBA-15/MWNT system exhibited the structural integrity of silica-tube arrangement and structural characteristics of MWNTs in terms of BET surface area and micropore volume. This work made it clear that the developed SBA-15/MWNT template could be used to synthesize various MWNT-incorporated 2-D replicas. |