首页 | 本学科首页   官方微博 | 高级检索  
     


Structural design sensitivity using boundary elements and polynomial response function
Authors:Marcin Kamiński
Affiliation:1. Mechanics of Materials, Technical University of ?ód?, Al. Politechniki 6, 93-590, ?ód?, Poland
Abstract:This main issue of this paper is a conjunction of the structural design sensitivity analysis using the Boundary Element Method with the polynomial response function determination. The procedure is so general that it enables sensitivity analysis for potential and elasticity problems within both homogeneous and heterogeneous plane and 3D problems. The essential difference with respect to the previous approaches like the Direct Differentiation Method or the Adjoint Variable Method is in discrete evaluation of the structural response using the response polynomials of some state parameters and design variable as the independent parameter. Such a determination is carried out via the several solutions of the given boundary value problem, where design parameter mean value is regularly perturbed in each of the solutions to cover the closest neighborhood of this mean value. Those few solutions make it possible to recover the polynomial response function from node-to node within the boundary elements, so that further symbolic differentiation using MAPLE returns the sensitivity gradients particular values. The entire procedure is tested here twice—first example deals with the homogeneous cantilever beam, where comparison against pure analytical differentiation is done and, separately, for two-component composite cantilever, where such a comparison is made against the central difference method linked with the same BEM solution.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号