首页 | 本学科首页   官方微博 | 高级检索  
     


(Pr, Co, Nb)-Doped SnO2 Varistor Ceramics
Authors:Jin-Feng Wang  Wen-Bin Su  Hong-Cun Chen  Wen-Xin Wang  Guo-Zhong Zang  Chang-Peng Li  Sara Bodde
Affiliation:School of Physics and Microelectronics, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, China; Department of Physics, University of California, San Diego, CA
Abstract:The effect on microstructure and electrical properties of (Co, Nb)-doped SnO2 varistors upon the addition of Pr2O3 was investigated by scanning electron microscopy and by determining I – V , ?– f , and R – f relations. The threshold electric field of the SnO2-based varistors increased significantly from 850 to 2280 V/mm, and the relative dielectric constants of the SnO2-based varistors decreased greatly from 784 to 280 as Pr2O3 concentration was increased up to 0.3 mol%. The significant decrease of the SnO2 grain size, from 4.50 to 1.76 μm with increasing Pr2O3 concentration over the range of 0–0.3 mol%, is the origin for the increase in the threshold voltage and decrease of the dielectric constants. The grain size reduction is attributed to the segregation of Pr2O3 at grain boundaries hindering the SnO2 grains from conglomerating into large particles. Varistors were found to have a superhigh threshold voltage and a comparatively large nonlinear coefficient α. For 0.15 mol% Pr2O3-doped sample, threshold electric field and nonlinear coefficient α were measured to be 1540 V/mm and 61, and for 0.3 mol% Pr2O3-doped sample, V and α were 2150 V/mm and 42, respectively. Superhigh threshold voltage and large nonlinear coefficient α qualify the Pr-doped SnO2 varistor as an excellent candidate for a high voltage protection system.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号