首页 | 本学科首页   官方微博 | 高级检索  
     

基于最大熵模型的英文名词短语指代消解
引用本文:钱伟,郭以昆,周雅倩,吴立德. 基于最大熵模型的英文名词短语指代消解[J]. 计算机研究与发展, 2003, 40(9): 1337-1343
作者姓名:钱伟  郭以昆  周雅倩  吴立德
作者单位:复旦大学计算机科学与工程系,上海,200433
基金项目:国家自然科学基金(69873011,60103014);国家"八六三"高技术研究发展计划基金(2001AA114120)
摘    要:提出了一种新颖的基于语料库的英文名词短语指代消解算法,该算法不仅能解决传统的代词和名词/名词短语间的指代问题,还能解决名词短语间的指代问题。同时,利用最大熵模型,可以有效地综合各种互不相关的特征,算法在MUC7公开测试语料上F值达到了60.2%,极为接近文献记载的该语料库上F值的最优结果61.8%。

关 键 词:最大熵 名词短语指代消解 自然语言处理

English Noun Phrase Coreference Resolution via a Maximum Entropy Model
QIAN Wei,GUO Yi Kun,ZHOU Ya Qian,and WU Li De. English Noun Phrase Coreference Resolution via a Maximum Entropy Model[J]. Journal of Computer Research and Development, 2003, 40(9): 1337-1343
Authors:QIAN Wei  GUO Yi Kun  ZHOU Ya Qian  and WU Li De
Abstract:In this paper, a novel corpus based learning approach to noun phrase coreference resolution is presented This approach aims to solve not only pronoun anaphora problem, but also a more general noun phrase coreference one, which is introduced by MUC By applying the maximum entropy (M E ) model and utilizing a flexible object based architecture, the system is able to make use of a range of knowledge sources in training the classifier and achieves an F measure of 60 2%, which is very close to the state of art result (61 8%), on the MUC 7 coreference resolution task corpus
Keywords:maximum entropy  noun phrase coreference resolution  natural language processing  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号