首页 | 本学科首页   官方微博 | 高级检索  
     


Rule Extraction from Trained Artifical Neural Networks
Authors:Géczy  Peter  Usui  Shiro
Affiliation:15.Department of Information and Computer Sciences, Toyohashi University of Technology, Hibarigaoka, Toyohashi, 441-8580, Japan
;
Abstract:

The neural network rule extraction problem is aimed at obtaining rules from an arbitrarily trained artificial neural network. Recently there have been several approaches to rule extraction. Approaches to rule extraction implement a priori knowledge of data or rule requirements into neural networks before the rules are extracted. Although this may lead to a simplified final phase of acquitting the rules from particular type of neural networks, it limits the methodologies for general-purpose use. This article approaches the neural network rule extraction problem in its essential and general form. Preference is given to multilayer perceptron networks (MLP networks) due to their universal approximation capabilities. The article establishes general theoretical grounds for rule extraction from trained artificial neural networks and further focuses on the problem of crisp rule extraction. The problem of crisp rule extraction from trained MLP networks is first approached on theoretical level. Present ed theoretical results state conditions guaranteeing equivalence between classification by an MLP network and crisp logical formalism. Based on the theoretical results an algorithm for crisp rule extraction, independent of training strategy, is proposed. The rule extraction algorithm can be used even in cases where the theoretical conditions are not strictly satisfied; by offering an approximate classification. An introduced rule extraction algorithm is experimentally demonstrated.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号