首页 | 本学科首页   官方微博 | 高级检索  
     


High-temperature stable dielectrics in Mn-modified (1-x) Bi0.5Na0.5TiO3-xCaTiO3 ceramics
Authors:Y Yuan  C J Zhao  X H Zhou  B Tang  S R Zhang
Affiliation:1. The State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, People’s Republic of China
Abstract:In the current work, the bulk (1-x) Bi0.5Na0.5TiO3-xCaTiO3 BNCT100x] system was synthesized via solid-state route. CaTiO3 in solid solution with Bi0.5Na0.5TiO3 was observed to decrease the dielectric constant at higher temperature and raise the dielectric constant at lower temperature. Polarization hysteresis measurements indicated that the ferroelectricity of Bi0.5Na0.5TiO3 was weakened with an increase of CaTiO3, resulted in the shift of the depolarization temperature (T d) toward lower temperatures. X-ray diffraction analysis revealed that TiO2 was produced as a secondary phase due to the losses of Bi and Na during milling and sintering processes. Moreover, the addition of Ca promoted the segregation of Ti out of BNT grains. Dielectric properties of BNCT12 ceramics with different dopant levels of Mn were characterized as a function of temperature for potential use of high-temperature capacitors. Modification of BNCT12 materials with Mn improved the temperature characteristic of capacitance (?55°C to 250°C, △C/C25°C ≤ ±15%). Finally, by doping 1.5 wt% Mn, the dielectric constant at room temperature could reach over 900, with a low dielectric loss below 1% and a high insulation resistivity about 1012 Ω?cm. Furthermore, a small amount of Mn influenced the microstructure in the way to inhibit the long grains and grain growth of BNCT solution ceramics. However, excess Mn caused abnormal grain growth, and therefore, rectangle grains appeared again.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号