首页 | 本学科首页   官方微博 | 高级检索  
     

基于GPU的实时图像拼接
引用本文:郭一汉,史美萍,吴涛. 基于GPU的实时图像拼接[J]. 计算机科学, 2012, 39(7): 257-261
作者姓名:郭一汉  史美萍  吴涛
作者单位:国防科技大学机电工程与自动化学院 长沙410073
基金项目:高速公路车辆智能驾驶中的关键科学问题研究
摘    要:大视野、高质量的图像信息对地面移动机器人的遥控操作具有非常重要的意义。提出了一种基于先验信息的自适应图像拼接方法。该方法在图像大致重叠区域中均匀选取待匹配点,利用改进的具有旋转不变性的NCC(Normalized Cross Correlation,归一化互相关)匹配方法进行区域相似性度量,通过RANSAC(Random Sample Con-sensus,随机采样一致性)算法估计图像射影变换模型,采用线性淡入淡出法进行图像融合。利用GPU强大的并行处理能力对算法进行了并行化实现,使图像拼接效率比单独采用CPU提高了60倍以上,稳定的拼接速度可达21.3fps。

关 键 词:图像拼接  并行图像处理  RANSAC  GPU  Computer Unified Device Architecture

Real Time Image Mosaic Based on GPU
GUO Yi-han , SHI Mei-ping , WU Tao. Real Time Image Mosaic Based on GPU[J]. Computer Science, 2012, 39(7): 257-261
Authors:GUO Yi-han    SHI Mei-ping    WU Tao
Affiliation:(College of Mechatronics and Automation,National University of Defense Technology,Changsha 410073,China)
Abstract:Telepresence with wide field of vision is one of the key technologies for teleoperated unmanned vehicle. To meet the real-time requirement, a fast image mosaic method was proposed, which selects evenly distributed points and calculates their similarity by rotation-invariant NCC (Normalized Cross Correlation) operator, calculates the projective transformation model by RANSAC (Random Sample Consensus) method,and fuses images by linear fade in and fade out. Finally, the algorithm was accelerated with a parallelized self-adaptive image matching method using GPU (Graphic Process Unit). Experiment results show that the efficiency of the parallclized image mosaicing method, compared with that of the serial scheme on CPU, is dramatically improved with more than 60 times on frame rate.
Keywords:Image mosaic   Parallel image mosaic   RANSAC   GPU   CUDA
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号