首页 | 本学科首页   官方微博 | 高级检索  
     

图嵌入和LSTM自动编码器结合的BGP异常检测
引用本文:张树晓,唐勇,刘宇靖. 图嵌入和LSTM自动编码器结合的BGP异常检测[J]. 计算机系统应用, 2022, 31(2): 246-252
作者姓名:张树晓  唐勇  刘宇靖
作者单位:国防科技大学 计算机学院, 长沙 410073
基金项目:国家自然科学基金(61602503)
摘    要:针对BGP异常数据的检测问题,依托互联网公开的真实BGP更新报文数据,重点结合网络的拓扑特征及时序变化特点,提出一种新的基于图嵌入特征和LSTM自动编码器的BGP异常检测方法.首先利用BGP数据中AS_PATH属性信息,构建基于时间序列的网络拓扑图的动态嵌入特征数据集,然后使用LSTM自动编码器模型对数据进行检测,发现...

关 键 词:图嵌入特征  BGP  异常检测  LSTM自动编码器
收稿时间:2021-04-25
修稿时间:2021-05-19

Anomaly Detection of BGP Using Graph Embedding and LSTM AutoEncoder
ZHANG Shu-Xiao,TANG Yong,LIU Yu-Jing. Anomaly Detection of BGP Using Graph Embedding and LSTM AutoEncoder[J]. Computer Systems& Applications, 2022, 31(2): 246-252
Authors:ZHANG Shu-Xiao  TANG Yong  LIU Yu-Jing
Affiliation:College of Computer Science and Technology, National University of Defence Technology, Changsha 410073, China
Abstract:With the real border gateway protocol (BGP) update message data disclosed on the Internet, this study proposes a new BGP anomaly detection method based on graph embedding features and long short-term memory (LSTM) AutoEncoder, which focuses on the network topology and variation characteristics in time series. First, the AS_PATH attribute information of BGP data is used to construct a dynamic embedding feature dataset based on the network topology of time series, and then the LSTM AutoEncoder model is employed for data detection to find abnormal ones. For the actual data of abnormal events, the method successfully detects the abnormal data and has higher accuracy than traditional detection methods.
Keywords:graph embedding  border gateway protocol (BGP)  anomaly detection  long short-term memory (LSTM) AutoEncoder
本文献已被 维普 等数据库收录!
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号