首页 | 本学科首页   官方微博 | 高级检索  
     


Quantized H∞ filtering for state‐delayed systems with finite frequency specifications
Authors:D El Hellani  A El Hajjaji  R Ceschi
Affiliation:1. Modeling, Information & System Laboratory, UPJV, UFR Sciences, Amiens, France;2. ESIGETEL, Paris, France
Abstract:This paper presents a novel design approach for the finite frequency (FF) H filtering problem for discrete‐time state‐delayed systems with quantized measurements. The system state and output are assumed affected by FF external noises. Attention is focused on the design of a stable filter that guarantees the stability and a prescribed ?2 gain performance level for the filtering error system in the FF domain of input noises. Sufficient conditions for the solvability of this problem are developed by choosing an appropriate Lyapunov‐Krasovskii functional based on the delay partitioning technique and using the FF ?2 gain definition combined with the generalized S‐procedure. Then, by means of Finsler's lemma, the derived conditions are linearized and additional slack variables are further introduced to more flexible result. Final filter design conditions are consequently established in terms of linear matrix inequalities in three different frequency ranges, ie, low‐, middle‐ and high‐frequency range. Finally, a simulation example is presented to illustrate the effectiveness and the merits of the proposed approach.
Keywords:finite frequency  H∞  filtering  quantized measurements  state‐delay
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号