首页 | 本学科首页   官方微博 | 高级检索  
     


High‐Entropy Alloy (HEA)‐Coated Nanolattice Structures and Their Mechanical Properties
Authors:Libo Gao  Jian Song  Zengbao Jiao  Weibing Liao  Junhua Luan  James Utama Surjadi  Junyang Li  Hongti Zhang  Dong Sun  Chain Tsuan Liu  Yang Lu
Affiliation:1. Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China;2. Department of Mechanical Engineering, Hong Kong Polytechnic University, Hong Kong, China;3. College of Physics and Energy, Shenzhen University, Shenzhen 518060, China;4. Center for Advanced Structural Materials, City University of Hong Kong, Hong Kong, China;5. Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
Abstract:
Nanolattice structure fabricated by two‐photon lithography (TPL) is a coupling of size‐dependent mechanical properties at micro/nano‐scale with structural geometry responses in wide applications of scalable micro/nano‐manufacturing. In this work, three‐dimensional (3D) polymeric nanolattices are initially fabricated using TPL, then conformably coated with an 80 nm thick high‐entropy alloy (HEA) thin film (CoCrFeNiAl0.3) via physical vapor deposition (PVD). 3D atomic‐probe tomography (APT) reveals the homogeneous element distribution in the synthesized HEA film deposited on the substrate. Mechanical properties of the obtained composite architectures are investigated via in situ scanning electron microscope (SEM) compression test, as well as finite element method (FEM) at the relevant length scales. The presented HEA‐coated nanolattice encouragingly not only exhibits superior compressive specific strength of ≈0.032 MPa kg?1 m3 with density well below 1000 kg m?3, but also shows good compression ductility due to its composite nature. This concept of combining HEA with polymer lattice structures demonstrates the potential of fabricating novel architected metamaterials with tunable mechanical properties.
Keywords:high‐entropy alloy (HEA)  in situ mechanical testing  nanolattice  structural metamaterials  two‐photon lithography (TPL)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号