首页 | 本学科首页   官方微博 | 高级检索  
     


Copper oxide photocathodes prepared by a solution based process
Authors:Chia-Ying Chiang  Yoon ShinKosi Aroh  Sheryl Ehrman
Affiliation:Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
Abstract:Solution based processes are well known by their low-cost trait to fabricate semiconductor devices. In this study, we devised an economical solution based route to photoelectrochemical (PEC) cells, taking copper nitrate as the copper ion source and adding an alkali hydroxide, here NaOH, to produce high aspect ratio (3.1–9.7) CuO nanoparticles. These CuO particles were used for splitting water and generation of hydrogen via a PEC cell. CuO nanoparticle morphology, i.e. rod-like, spindle-like, and needle-like, was dependent on the processing temperature. Sintering the spin coated CuO films, improved crystallinity. The bandgaps for these films were estimated to be 1.35 eV and 1.64 eV for sintering temperatures of 600 °C and 400 °C for 1 h, respectively. The porous structure of the nano-sized CuO films increased surface area and thus led to a high photocurrent, i.e. 1.20 mA/cm2, for powder prepared at 60 °C and sintered at 600 °C for 1 h. These films demonstrated 0.91% solar conversion efficiency at an applied voltage of −0.55 V vs. Ag/AgCl in 1 M KOH electrolyte with 1 sun (AM1.5G) illumination. The charge carrier density was estimated to be 6.1 × 1020 cm−3. This relatively high charge carrier density may be due to the high surface area and short transport distance to the electrode/electrolyte interface in the porous nanostructure.
Keywords:Hydrogen energy  Photoelectrochemical cell  Copper oxide  Water splitting
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号