首页 | 本学科首页   官方微博 | 高级检索  
     


Investigation of hydrogen storage behavior of silicon nanoparticles
Authors:Paresh Kale  Aneesh C GangalRaju Edla  Pratibha Sharma
Affiliation:Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
Abstract:Porous Silicon (PS) freestanding film is a derivative of single crystal Si wafer. PS films obtained on electrochemical etching of p-type silicon (Si) wafer were used to synthesize Si nanoparticles by ultrasonication. 12 μm thick and 29% porous freestanding PS films were sonicated for 4 h in 120 W ultrasonication bath at 42 kHz. HRTEM image shows Si nanoparticles in the range of 8–20 nm in size. In this paper we present results of hydrogen absorption experiments conducted on Si nanoparticles. Standard Seivert’s type apparatus was used to carry out hydrogen absorption pressure composition isotherm measurements in the pressure range of 1–10 bar and in the temperature range of 29 °C–150 °C. Theoretically SiHx system has 3.44, 6.66 and 9.67 wt% of hydrogen for x = 1, 2, 3 respectively. Experimental results show maximum hydrogen uptake of 2.25 wt% at the temperature of 120 °C and at 9.76 bar pressure. Hydrogenation of Si nanoparticles exhibits frequency downshifts from 510.7 to 507.3 cm−1 in Raman spectra. Raman peaks were de-convoluted in two bands to study effect of hydrogenation on FWHM, crystallanity and elastic strain of the nanoparticles. Bonding between Si, O and H atoms were investigated using Fourier transform infrared spectroscopy(FTIR) spectroscopy. UV–Vis spectra and Tauc plots were used to discuss the relation between hydrogenation and optical band gap of the Si nanoparticles. Optical band gap was found to increase from 1.6 to 2.25 eV on subjecting Si nanoparticles to hydrogenation.
Keywords:Porous Silicon  Ultrasonication  Hydrogen absorption
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号