首页 | 本学科首页   官方微博 | 高级检索  
     


Thermodynamic analysis of a novel integrated geothermal based power generation-quadruple effect absorption cooling-hydrogen liquefaction system
Authors:TAH Ratlamwala  I Dincer  MA Gadalla
Affiliation:1. Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada;2. Department of Mechanical Engineering, American University of Sharjah, Sharjah, PO Box 26666, United Arab Emirates
Abstract:In this paper, we propose a novel integrated geothermal absorption system for hydrogen liquefaction, power and cooling productions. The effect of geothermal, ambient temperature and concentration of ammonia-water vapor on the system outputs and efficiencies are studied through energy and exergy analyses. It is found that both energetic and exergetic coefficient of performances (COPs), and amounts of hydrogen gas pre-cooled and liquefied decrease with increase in the mass flow rate of geothermal water. Moreover, increasing the temperature of geothermal source degrades the performance of the quadruple effect absorption system (QEAS), but at the same time it affects the liquefaction production rate of hydrogen gas in a positive way. However, an increase in ambient temperature has a negative effect on the liquefaction rate of hydrogen gas produced as it decreases from 0.2 kg/s to 0.05 kg/s. Moreover, an increase in the concentration of the ammonia-water vapor results in an increase in the amount of hydrogen gas liquefied from 0.07 kg/s to 0.11 kg/s.
Keywords:Hydrogen liquefaction  Quadruple effect absorption cooling system  Exergy  Energy  Efficiency  Geothermal
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号