首页 | 本学科首页   官方微博 | 高级检索  
     


Dielectric properties of nylon 6/clay nanocomposites from on-line process monitoring and off-line measurements
Authors:Natsuko Noda  Anthony J. Bur  Vivek M. Prabhu  Steven C. Roth
Affiliation:a Polymers Division, National Institute of Standards and Technology, 100 Bureau Dr., Mail Stop 8542, Gaithersburg, MD 20899 8542, USA
b Chemical Electrophysics Corporation, Hockessin, DE 19707, USA
Abstract:Nylon 6/clay nanocomposites were studied by dielectric relaxation spectroscopy (DRS) to correlate morphology and microstructure with relaxation behavior of the polymer matrix at the molecular level. Partially exfoliated clay microstructure was achieved by extruding nylon 6 with surfactant-treated montmorillonite clays. A new on-line dielectric slit die sensor was used to examine the melt state properties during extrusion compounding. Solid state properties were probed by off-line DRS over a temperature range from −50 to 180 °C in a frequency range from 10−3 to 106 Hz. Using non-linear regression methods in conjunction with the temperature-frequency positions of relaxations observed in the dielectric loss data, the experimental data were fit with the Havriliak-Negami and Cole-Cole dielectric relaxation functions corrected for electrode polarization and DC conductivity. Characteristic frequency, relaxation strength, and DC conductivities were extracted from curves with overlapping relaxation modes. Two dielectric relaxations were observed in the composite melt: the α relaxation associated with molecular segmental motion, and a Maxwell-Wagner relaxation (MW) resulting from interfacial polarization at the resin/clay interface. Analysis of the solid-state data yielded a comprehensive master plot of dielectric relaxations attributed to segmental and local molecular dynamics and other relaxations resulting from water and Maxwell-Wagner interfacial polarization. The impact of clay fillers is seen in nearly all relaxation processes changing both characteristic frequency and strength of the relaxation.
Keywords:Clay nanocomposites   DC conductivity   Dielectric properties
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号