首页 | 本学科首页   官方微博 | 高级检索  
     

支持向量机在入侵检测中的应用
引用本文:代红. 支持向量机在入侵检测中的应用[J]. 计算机工程, 2012, 38(4): 143-145
作者姓名:代红
作者单位:辽宁科技大学软件学院,辽宁鞍山,114051
基金项目:辽宁科技大学科研专项基金资助项目(2011zx19)
摘    要:为实现海量网络数据的入侵检测,将支持向量机应用于入侵检测中。在入侵检测实验中,通过数据筛选策略,减少建立检测模型所需要的样本数,根据每个特征属性的重要性赋予不同权重,设计有特征加权的支持向量机算法。实验结果表明,该算法能缩短检测模型的建立时间,提高检测精度,降低漏报率。

关 键 词:支持向量机  入侵检测  数据筛选  特征加权
收稿时间:2011-07-20

Application of Support Vector Machine in Intrusion Detection
DAI Hong. Application of Support Vector Machine in Intrusion Detection[J]. Computer Engineering, 2012, 38(4): 143-145
Authors:DAI Hong
Affiliation:DAI Hong (School of Software, University of Science and Technology Liaoning, Anshan 114051, China)
Abstract:Aiming at the problem that a huge mass of network data are real-time processed, this paper proposes application of support vector machine in intrusion detection. The number of samples for building detection model is decreased by applying data filtering strategy on the intrusion detection experiments. According to the importance measurement of each feature attribute, different weightings are given. It designs the feature weighted Support Vector Machine(SVM) algorithm. Experimental results demonstrate that the algorithm can effectively shorten building detection model time and improve detection accuracy. It can also lower false negative rate.
Keywords:Support Vectory Machine(SVM)  intrusion detection  data filtering  feature weighted
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号