Abstract: | Nanostructured WC-Co coatings were produced with Atmospheric Plasma Spraying (APS) and Low Pressure Plasma Spraying (LPPS). Microstructure characteristics and phase compositions of the coatings were studied by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD) respectively. The microstructure compositions were analyzed with EDS. During APS deposition the existence of oxygen causes the decarburization of the coating, and the coating was composed of melted area and the WC/12Co powder. Besides WC phase, there was W2C phase. However in the coating deposited by LPPS the content of oxygen was so low that there were a limit degradation of the WC/12Co powder. The coatings were made up of compact block and loosen porosity area. There were large quantities of nanostructure WC grains and a small quantity of microstructure WC grains presented in the coating. Besides WC phase, a little W2C and WC1-x or Co6W6C phases occured. Consideration of the characteristics of the highly porous, spherical-shell morphology of nano-WC/12Co power, heterogeneous melting and localized superheating of the power were two main factors which caused the microstructure and phase composition of nano-WC-Co coatings. |