摘 要: | 随着互联网的发展,人们在享受互联网带来的诸多便利之外,同时也面临着许多威胁,如蠕虫、木马等。为了抵御上述恶意攻击,入侵检测系统应运而生。通过检测当前网络中的异常情况,入侵检测系统能有效检测各项攻击进而采取对应措施。然而,传统的机器学习算法在入侵检测模型中准确率并不高,为此,提出一种基于粒子群优化和LightGBM的入侵检测方法,使用LightGBM方法搭建入侵检测模型,采用粒子群算法优化LightGBM的参数。实验表明,本文提出的方法能够有效提升效果,准确率达98.61%、精确率达98.25%、召回率达99.17%、F1值达98.70%。
|