首页 | 本学科首页   官方微博 | 高级检索  
     


Interior symmetry and local bifurcation in coupled cell networks
Authors:M Golubitsky  M Pivato  I Stewart
Affiliation:  a Department of Mathematics, University of Houston, Houston, TX 77204-3008, USA b Department of Mathematics, Trent University, Peterborough, ON, Canada K9L 1Z6 c Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
Abstract:A coupled cell system is a network of dynamical systems, or 'cells', coupled together. Such systems can be represented schematically by a directed graph whose nodes correspond to cells and whose edges represent couplings. A symmetry of a coupled cell system is a permutation of the cells and edges that preserves all internal dynamics and all couplings. It is well known that symmetry can lead to patterns of synchronized cells, rotating waves, multirhythms, and synchronized chaos. Recently, the introduction of a less stringent form of symmetry, the 'symmetry groupoid', has shown that global group-theoretic symmetry is not the only mechanism that can create such states in a coupled cell system. The symmetry groupoid consists of structure-preserving bijections between certain subsets of the cell network, the input sets. Here, we introduce a concept intermediate between the groupoid symmetries and the global group symmetries of a network: 'interior symmetry'. This concept is closely related to the groupoid structure, but imposes stronger constraints of a group-theoretic nature. We develop the local bifurcation theory of coupled cell systems possessing interior symmetries, by analogy with symmetric bifurcation theory. The main results are analogues for 'synchrony-breaking' bifurcations of the Equivariant Branching Lemma for steady-state bifurcation, and the Equivariant Hopf Theorem for bifurcation to time-periodic states.
Keywords:
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号