首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度卷积神经网络的色素性皮肤病识别分类
引用本文:何雪英,韩忠义,魏本征. 基于深度卷积神经网络的色素性皮肤病识别分类[J]. 计算机应用, 2018, 38(11): 3236-3240. DOI: 10.11772/j.issn.1001-9081.2018041224
作者姓名:何雪英  韩忠义  魏本征
作者单位:山东中医药大学 理工学院, 济南 250355
基金项目:山东省自然科学基金资助项目(ZR2015FM010);山东高等学校科技计划项目(J15LN20);山东省医药卫生科技发展计划项目(2016WS0577);山东省中医药科技发展计划项目(2017-001)。
摘    要:针对当前皮肤病识别分类面临的两个主要问题:一是由于皮肤病种类繁多,病灶外观的类间相似度高和类内差异化大,尤其是色素性皮肤病,使得皮肤病的识别分类比较困难;二是皮肤病识别算法模型设计存在一定的局限性,识别率还有待进一步提高。为此,以VGG19模型为基础架构,训练了一个结构化的深度卷积神经网络(CNN),实现了色素性皮肤病的自动分类。首先,采用数据增强(裁剪、翻转、镜像)对数据进行预处理;其次,将在ImageNet上预训练好的模型,迁移至增强后的数据集进行调优训练,训练过程中通过设置Softmax损失函数的权重,增加少数类判别错误的损失,来缓解数据集中存在的类别不平衡问题,提高模型的识别率。实验采用深度学习框架PyTorch,在数据集ISIC2017上进行。实验结果表明,该方法的识别率和敏感性可分别达到71.34%、70.01%,相比未设置损失函数的权重时分别提高了2.84、11.68个百分点,说明该方法是一种有效的皮肤病识别分类方法。

关 键 词:色素性皮肤病  皮肤镜图像  皮肤病分类  深度学习  卷积神经网络  类别不平衡  
收稿时间:2018-03-16
修稿时间:2018-05-24

Pigmented skin lesion recognition and classification based on deep convolutional neural network
HE Xueying,HAN Zhongyi,WEI Benzheng. Pigmented skin lesion recognition and classification based on deep convolutional neural network[J]. Journal of Computer Applications, 2018, 38(11): 3236-3240. DOI: 10.11772/j.issn.1001-9081.2018041224
Authors:HE Xueying  HAN Zhongyi  WEI Benzheng
Affiliation:College of Science and Technology, Shandong University of Traditional Chinese Medicine, Jinan Shandong 250355, China
Abstract:Currently, the recognition and classification of skin lesions faces two major challenges. First, the wide variety of skin lesions, the high similarity between different classes, and the large differences within the same class, especially pigmented skin lesions, make it difficult to identify and classify skin lesions. Second, as the limitations of the recognition algorithms of skin lesions, the recognition rates of the algorithms need to be further improved. To this end, an end-to-end structured deep Convolutional Neural Network (CNN) model was trained based on VGG19 network to achieve automated recognition and classification of pigmented skin lesions. Firstly, a data augmentation method (random crop, flip, mirror) was used for data preprocessing. Then, the pre-trained model from ImageNet was transferred to the augmented data samples to fine-tune the parameters. Meanwhile, by setting a weight of Softmax loss, the loss of minority class discriminant errors was increased to effectively alleviate the class-imbalance problem in the dataset. As a result, the recognition rate of the model was improved. Experiments were implemented on the dataset ISIC2017 using the deep learning framework PyTorch. The experimental results show that the recognition rate and sensitivity of the proposed method can reach 71.34% and 70.01%, respectively, which are 2.84 and 11.68 percentage points higher than those without the weight of Softmax loss. It is confirmed that our method is effective in the recognition and classification of skin lesions.
Keywords:pigmented skin lesion  dermoscopic image  skin lesion classification  deep leaning  Convolutional Neural Network (CNN)  class-imbalance  
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号