首页 | 本学科首页   官方微博 | 高级检索  
     

基于Spark Streaming的快速视频转码方法
引用本文:付眸,杨贺昆,吴唐美,何润,冯朝胜,康胜. 基于Spark Streaming的快速视频转码方法[J]. 计算机应用, 2018, 38(12): 3500-3508. DOI: 10.11772/j.issn.1001-9081.2018040942
作者姓名:付眸  杨贺昆  吴唐美  何润  冯朝胜  康胜
作者单位:1. 四川师范大学 计算机科学学院, 成都 610101;2. 可视化计算与虚拟现实四川省重点实验室(四川师范大学), 成都 610101;3. 四川师大科技园发展有限公司, 成都 610066
基金项目:国家自然科学基金资助项目(61373163);国家科技支撑计划项目(2014BAH11F02,2014BAH11F01);四川省科技支撑计划项目(2015GZ079)。
摘    要:针对单机视频转码方法转码速度较慢和面向批处理的并行转码方法效率提升有限的问题,基于Spark Streaming分布式流处理框架,提出了一种面向流处理的快速视频转码方法。首先,使用开源多媒体处理工具FFmpeg,构建了自动化的视频切片模型,提出编程算法;然后,针对并行视频转码的特点,对弹性分布式数据集(RDD)进行研究,构建了视频转码的流处理模型;最后,设计视频合并方案,将合并后的视频文件进行有效储存。根据所提出的快速视频转码方法设计与实现了基于Spark Streaming的快速视频转码系统。实验结果表明,与面向批处理Hadoop视频转码方法相比,所提方法转码效率提升了26.7%;与基于Hadoop平台的视频并行转码方法相比,该方法转码效率提升了20.1%。

关 键 词:视频转码  Spark Streaming  分布式流处理  FFmpeg  弹性分布式数据集  
收稿时间:2018-05-07
修稿时间:2018-07-04

Fast video transcoding method based on Spark Streaming
FU Mou,YANG Hekun,WU Tangmei,HE Run,FENG Chaosheng,KANG Sheng. Fast video transcoding method based on Spark Streaming[J]. Journal of Computer Applications, 2018, 38(12): 3500-3508. DOI: 10.11772/j.issn.1001-9081.2018040942
Authors:FU Mou  YANG Hekun  WU Tangmei  HE Run  FENG Chaosheng  KANG Sheng
Affiliation:1. School of Computer Science, Sichuan Normal University, Chengdu Sichuan 610101, China;2. Visual Computing & Virtual Reality Key Laboratory of Sichuan Province(Sichuan Normal University), Chengdu Sichuan 610101, China;3. Sichuan Normal University Technology Park Development Company Limited, Chengdu Sichuan 610066, China
Abstract:Aiming at the problems of slow transcoding speed of single-machine video transcoding method and limited efficiency improvement of parallel transcoding method for batch processing, a fast video transcoding method for stream processing based on Spark Streaming distributed stream processing framework was proposed. Firstly, an automated video slicing model was built by using the open source multimedia processing tool of FFmpeg and a programming algorithm was proposed. Then, in view of the characteristics of parallel video transcoding, the stream processing model of video transcoding was constructed by studying Resilient Distributed Datasets (RDD). Finally, the video merging scheme was designed to store the combined video files effectively. Based on the proposed fast video transcoding method, a fast video transcoding system based on Spark Streaming was designed and implemented. The experimental results show that, compared with the Hadoop video transcoding method for batch processing, the proposed method has improved the transcoding efficiency by 26.7%, and compared with the video parallel transcoding based on Hadoop platform, the proposed method has improved the transcoding efficiency by 20.1%.
Keywords:video transcoding   Spark Streaming   distributed stream processing   FFmpeg   Resilient Distributed Datasets (RDD)
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号