相关向量机及其在机械故障诊断中的应用研究进展 |
| |
引用本文: | 王波,刘树林 张宏利 蒋超. 相关向量机及其在机械故障诊断中的应用研究进展[J]. 振动与冲击, 2015, 34(5): 145-153 |
| |
作者姓名: | 王波 刘树林 张宏利 蒋超 |
| |
作者单位: | 1.上海大学 机电工程与自动化学院 上海 200072; 2.滁州学院 机械与电子工程学院 安徽 滁州 239000 |
| |
摘 要: | 相关向量机是一种基于贝叶斯稀疏理论的新型机器学习算法,近年来被应用于多个行业,并得到了国内外学者的不断关注和研究,然而在机械故障诊断领域还未得到足够的重视。简述了相关向量机的特点,通过与支持向量机相比较,阐述了相关向量机的优缺点,综述和分析了近年来相关向量机的国内外研究现状,重点关注相关向量机在机械设备状态监测与故障诊断领域的研究进展。在此基础上,分析了相关向量机研究所存在的一些问题,并展望了相关向量机在机械故障诊断领域应用的未来方向。
|
关 键 词: | 故障诊断 相关向量机 智能诊断 研究进展 |
Relevance vector machine and its applications in machine fault diagnosis |
| |
Affiliation: | 1.School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200072,China;2.School of Mechanical and Electronic Engineering, Chuzhou University,Chuzhou,239000,China |
| |
Abstract: | Relevance vector machine (RVM) is a new statistical machine learning algorithm based on the theory of the sparse Bayesian learning and it has been applied to many fields in recent years. The researchers both at home and abroad have paid more and more attention on RVM. However, it has not been placed a high value in the mechanical fault diagnostic research. The characteristics of RVM are stated, the advantages and disadvantages compared with Support vector machine (SVM) are discussed, and the inland and overseas research advances are reviewed, especially in the field of mechanical fault diagnostic. Moreover, some existing problems in current research are analyzed, and the research directions of RVM for the mechanical fault diagnosis in the future are prospected. |
| |
Keywords: | fault diagnosis Relevance Vector Machine intelligent diagnosis research progress |
本文献已被 CNKI 等数据库收录! |
| 点击此处可从《振动与冲击》浏览原始摘要信息 |
|
点击此处可从《振动与冲击》下载全文 |
|