首页 | 本学科首页   官方微博 | 高级检索  
     

级联双稳随机共振和基于hermite插值的局部均值分解方法在齿轮故障诊断中应用
作者姓名:李永波  徐敏强  赵海洋  张思杨  黄文虎
作者单位:哈尔滨工业大学深空探测基础研究中心,哈尔滨 150001
摘    要:针对于弱信号在齿轮故障中难以提取问题,提出了一种基于级联双稳随机共振 (Cascaded Bistable Stochastic Resonance,简称CBSR)降噪和局部均值分解(Local Mean Decomposition,简称LMD)齿轮故障的诊断方法。随机共振可有效削弱信号中的噪声,利用噪声增强故障信号的微弱特征;LMD方法可自适应将复杂信号分解为若干个具有一定物理意义上PF分量之和,适合处理多分量调幅调频信号。首先将振动信号进行CBSR消噪处理,然后对消噪信号进行LMD分解,通过PF分量的幅值谱找到齿轮的故障频率。通过齿轮磨损故障诊断的工程应用,表明该方法可以有效提取齿轮故障微弱特征,实现齿轮箱的早期故障诊断。  

本文献已被 CNKI 等数据库收录!
点击此处可从《振动与冲击》浏览原始摘要信息
点击此处可从《振动与冲击》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号