首页 | 本学科首页   官方微博 | 高级检索  
     

基于灰狼群智能最优化的神经网络PM2.5浓度预测
引用本文:石峰,楼文高,张博. 基于灰狼群智能最优化的神经网络PM2.5浓度预测[J]. 计算机应用, 2017, 37(10): 2854-2860. DOI: 10.11772/j.issn.1001-9081.2017.10.2854
作者姓名:石峰  楼文高  张博
作者单位:1. 上海理工大学 光电信息与计算机工程学院, 上海 200093;2. 上海商学院 信息与计算机学院, 上海 200235;3. 上海理工大学 出版印刷与艺术设计学院, 上海 200093
基金项目:上海高校知识服务平台"上海市商贸服务业知识项目服务中心"建设项目(ZF1226)。
摘    要:针对目前PM2.5浓度测量成本高和测量过程繁杂等问题,建立了基于灰狼群智能最优化算法的神经网络预测模型。从非机理模型的角度,结合气象因素和空气污染物对上海市的PM2.5浓度进行预测,并使用平均影响值分析了影响PM2.5浓度的重要因素。使用灰狼群智能算法优化神经网络的过程中,引入了检验样本实时监控训练过程以避免发生"过训练"现象,确保建立的神经网络模型具有较好的泛化能力。实验结果表明:PM10对PM2.5的影响最为显著,其次是CO和前一天PM2.5。选取2016年11月1日-12日的数据进行验证,其平均相对误差为13.46%,平均绝对误差为8μg/m3,与粒子群算法优化的神经网络、BP神经网络模型及支持向量回归(SVR)模型的误差相比,平均相对误差分别下降了约3个百分点、5个百分点和1个百分点。因此,使用灰狼算法优化的神经网络更适合上海市PM2.5浓度的预测和空气质量的预报。

关 键 词:灰狼优化算法  BP神经网络  PM2.5浓度预测  预测模型  空气污染物  
收稿时间:2017-04-20
修稿时间:2017-06-22

Neural network model for PM2.5 concentration prediction by grey wolf optimizer algorithm
SHI Feng,LOU Wengao,ZHANG Bo. Neural network model for PM2.5 concentration prediction by grey wolf optimizer algorithm[J]. Journal of Computer Applications, 2017, 37(10): 2854-2860. DOI: 10.11772/j.issn.1001-9081.2017.10.2854
Authors:SHI Feng  LOU Wengao  ZHANG Bo
Affiliation:1. School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;2. Information and Computer Faculty, Shanghai Business School, Shanghai 200235, China;3. College of Communication and Art Design, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract:Focusing on high cost and complicated process of the fine particulate matter (PM2.5) measurement system, a neural network model based on grey wolf optimizer algorithm was established. From the perspective of non-mechanism model, the daily PM2.5 concentration in Shanghai was forecasted with meteorological factors and air pollutants, and the important factors were analyzed by mean impact value. To avoid the "over training" and ensure the generalization ability, the validation datasets were used to monitor the training process. The experimental results show that the most significant factors that affecting the PM2.5 concentration are PM10, and then are the CO and the previous day's PM2.5. Based on the datasets obtained from November 1, 2016 to November 12, the relative average error of the proposed model is 13.46%, the absolute average error is 8μg/m3; the relative average error of it is decreased by about 3 percentage points, 5 percentage points and 1 percentage points compared with the prediction models based on Particle Swarm Optimization (PSO), BP neural network and Support Vector Regression (SVR). The neural network model based on the grey wolf optimizer algorithm is more suitable for forecasting PM2.5concentration and air quality in Shanghai.
Keywords:grey wolf optimizer algorithm  BP neural network  PM2.5 concentration prediction  prediction model  air pollutant  
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号