首页 | 本学科首页   官方微博 | 高级检索  
     

基于Hopfield神经网络的云存储负载均衡策略
引用本文:李强,刘晓峰. 基于Hopfield神经网络的云存储负载均衡策略[J]. 计算机应用, 2017, 37(8): 2214-2217. DOI: 10.11772/j.issn.1001-9081.2017.08.2214
作者姓名:李强  刘晓峰
作者单位:1. 太原理工大学 财经学院, 太原 030024;2. 山西省财政税务专科学校 信息学院, 太原 030024;3. 太原理工大学 大数据学院, 太原 030024
基金项目:国家自然科学基金资助项目(61502330);山西省高等学校科技创新项目(20161131);山西省软科学计划研究项目(2016041008-5)。
摘    要:针对当前Hadoop存储效率不高,且副本故障后恢复成本较高的问题,提出一种基于Hopfield神经网络(HNN)的存储策略。为了实现系统整体性能的提升,首先分析影响存储效率的资源特征;然后建立资源约束模型,设计Hopfield能量函数,并化简该能量函数;最后,通过标准用例Wordcount测试,分析8个节点的平均利用率,并与三个常用算法包括基于资源的动态调用算法、基于能耗的算法和Hadoop默认存储策略进行性能和资源利用方面的比较。实验表明,与对比算法相比,基于HNN的存储策略在效率上分别平均提升15.63%、32.92%和55.92%。因此,该方法在应用中可以更好地实现资源负载平衡,将有助于改善Hadoop的存储能力,并可以加快检索。

关 键 词:云存储  Hadoop  Hadoop分布式文件系统  副本策略  负载均衡  
收稿时间:2017-01-18
修稿时间:2017-03-10

Load balancing strategy of cloud storage based on Hopfield neural network
LI Qiang,LIU Xiaofeng. Load balancing strategy of cloud storage based on Hopfield neural network[J]. Journal of Computer Applications, 2017, 37(8): 2214-2217. DOI: 10.11772/j.issn.1001-9081.2017.08.2214
Authors:LI Qiang  LIU Xiaofeng
Affiliation:1. College of Finance and Economics, Taiyuan University of Technology, Taiyuan Shanxi 030024, China;2. College of Information, Shanxi Finance and Taxation College, Taiyuan Shanxi 030024, China;3. College of Data Science, Taiyuan University of Technology, Taiyuan Shanxi 030024, China
Abstract:Focusing on the shortcoming of low storage efficiency and high recovery cost after copy failure of the current Hadoop, Hopfield Neural Network (HNN) was used to improve the overall performance. Firstly, the resource characteristics that affect the storage efficiency were analyzed. Secondly, the resource constraint model was established, the Hopfield energy function was designed and simplified. Finally, the average utilization rate of 8 nodes was analyzed by using the standard test case Wordcount, and the performance and resource utilization of the proposed strategy were compared with three typical algorithms including dynamic resource allocation algorithm, energy-efficient algorithm and Hadoop default storage strategy, and the comparison results showed that the average efficiency of the storage strategy based on HNN was promoted by 15.63%, 32.92% and 55.92% respectively. The results indicate that the proposed algorithm can realize the resource load balancing, help to improve the storage capacity of Hadoop, and speed up the retrieval.
Keywords:cloud storage   Hadoop   Hadoop Distributed File System (HDFS)   replica strategy   load balancing
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号