首页 | 本学科首页   官方微博 | 高级检索  
     

基于倒数函数谱残差的显著对象探测和提取方法
引用本文:陈文兵,鞠虎,陈允杰. 基于倒数函数谱残差的显著对象探测和提取方法[J]. 计算机应用, 2017, 37(7): 2071-2077. DOI: 10.11772/j.issn.1001-9081.2017.07.2071
作者姓名:陈文兵  鞠虎  陈允杰
作者单位:南京信息工程大学 数学与统计学院, 南京 210044
基金项目:国家自然科学基金资助项目(61672291);北极阁基金资助项目(BJG201504)。
摘    要:针对"中心-周围"的显著对象探测方法频繁出现探测或提取对象不完整、边界不平滑以及其9级金字塔下采样的冗余问题,提出一种基于倒数函数-谱残差(RFSR)的显著对象探测方法。首先,利用灰度图像与其对应的高斯低通滤波的差代替"中心-周围"方法中灰度图像标准化,并减少高斯金字塔至6级以降低冗余;其次,利用倒数函数滤波器代替Gabor滤波器提取局部方向信息;接着,利用谱残差方法提取图像的谱特征;最后,将这三个特征经过适当融合生成最终显著图。在两个常用基准数据集上的实验结果表明,所提方法在准确率(precision)、召回率(recall)及F-measure等指标上均比"中心-周围"及谱残差模型有明显提高,其为进一步图像分析、对象识别及基于显著视觉关注的图像检索等理论及应用研究奠定了基础。

关 键 词:显著对象  显著性区域  特征提取  倒数函数  显著图  
收稿时间:2016-12-16
修稿时间:2017-03-02

Salient object detection and extraction method based on reciprocal function and spectral residual
CHEN Wenbing,JU Hu,CHEN Yunjie. Salient object detection and extraction method based on reciprocal function and spectral residual[J]. Journal of Computer Applications, 2017, 37(7): 2071-2077. DOI: 10.11772/j.issn.1001-9081.2017.07.2071
Authors:CHEN Wenbing  JU Hu  CHEN Yunjie
Affiliation:School of Mathematics and Statistics, Nanjing University of Information Science & Technology, Nanjing Jiangsu 210044, China
Abstract:To solve the problems of "center-surround" salient object detection and extraction method, such as incomplete object detected or extracted, not smooth boundary and redundancy caused by down-sampling 9-level pyramid, a salient object detection method based on Reciprocal Function and Spectral Residual (RFSR) was proposed. Firstly, the difference between the intensity image and its corresponding Gaussian low-pass one was used to substitute the normalization of the intensity image under "center-surround" model, meanwhile the level of Gaussian pyramid was further reduced to 6 to avoid redundancy. Secondly, a reciprocal function filter was used to extract local orientation information instead of Gabor filter. Thirdly, spectral residual algorithm was used to extract spectral feature. Finally, three extracted features were properly combined to generate the final saliency map. The experimental results on two mostly common benchmark datasets show that compared with "center-surround" and spectral residual models, the proposed method significantly improves the precision, recall and F-measure, furthermore lays a foundation for subsequent image analysis, object recognition, visual-attention-based image retrieval and so on.
Keywords:salient object   saliency region   feature extraction   reciprocal function   saliency map
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号