基于词典和弱标注信息的电影评论情感分析 |
| |
作者姓名: | 樊振 过弋 张振豪 韩美琪 |
| |
作者单位: | 1. 华东理工大学 信息科学与工程学院, 上海 200237;2. 石河子大学 信息科学与技术学院, 新疆 石河子 832003 |
| |
基金项目: | 国家自然科学基金资助项目(61462073);上海市科学技术委员会科研计划项目(17DZ1101003,18511106602)。 |
| |
摘 要: | 针对评论文本情感分析研究中数据标注费时费力的问题,提出了一种新的数据自动标注方法。首先,通过基于情感词典的方法计算出评论文本的情感倾向;其次,利用用户评分的弱标注信息和基于词典方法的情感倾向对评论文本自动标注;最后,利用支持向量机(SVM)对评论文本进行情感分类。所提出的数据自动标注方法在两种类型数据集情感分类准确率上分别达到了77.2%和77.8%,相对于单一的利用用户评分对数据标注的方法,分别提高了1.7个百分点和2.1个百分点。实验结果表明,提出的数据自动标注方法在电影评论情感分析中能提高分类效果。
|
关 键 词: | 电影评论 情感词典 弱标注信息 支持向量机 情感分类 |
收稿时间: | 2018-04-23 |
修稿时间: | 2018-05-30 |
|
| 点击此处可从《计算机应用》浏览原始摘要信息 |
|
点击此处可从《计算机应用》下载全文 |
|