首页 | 本学科首页   官方微博 | 高级检索  
     

多特征融合的车牌定位算法
引用本文:杨硕,张波,张志杰. 多特征融合的车牌定位算法[J]. 计算机应用, 2016, 36(6): 1730-1734. DOI: 10.11772/j.issn.1001-9081.2016.06.1730
作者姓名:杨硕  张波  张志杰
作者单位:1. 沈阳化工大学 计算机科学与技术学院, 沈阳 110142;2. 西南民族大学 计算机科学与技术学院, 成都 610041
基金项目:辽宁省教育厅基金资助项目(L2014171)。
摘    要:针对使用单一特征在复杂场景下车牌定位效果不佳的问题,提出了一种融合了边缘、颜色、纹理等多种特征的车牌定位算法。该算法将定位过程分为假设生成和假设检验两个阶段:在假设生成阶段,使用特征点检测、形态学作为主要技术手段,利用车牌的字符纹理和颜色特征生成候选车牌;在假设检验阶段,使用灰度投影作为技术手段,利用车牌结构的固有特征验证候选并实现定位。实验结果表明:在包含实际场景的车牌图像库中,定位成功率可以达到96.6%,精确度可以达到95.4%,验证了多特征融合算法的合理性和有效性。

关 键 词:车牌检测  车牌定位  多特征融合  分类器  特征点检测  
收稿时间:2015-10-15
修稿时间:2016-01-04

Vehicle license plate localization algorithm based on multi-feature fusion
YANG Shuo,ZHANG Bo,ZHANG Zhijie. Vehicle license plate localization algorithm based on multi-feature fusion[J]. Journal of Computer Applications, 2016, 36(6): 1730-1734. DOI: 10.11772/j.issn.1001-9081.2016.06.1730
Authors:YANG Shuo  ZHANG Bo  ZHANG Zhijie
Affiliation:1. College of Computer Science and Technology, Shenyang University of Chemical Technology, Shenyang Liaoning 110142, China;2. School of Computer Science and Technology, Southwest University for Nationalities, Chengdu Sichuan 610041, China
Abstract:The single feature based vehicle license plate localization algorithms are hard to be adapted to the complex environment. In order to solve the problem, a multi-feature fusion algorithm was proposed, which made use of multi-features such as edge, color and texture. The localization process was divided into two phases: Hypothesis Generation (HG) and Hypothesis Verification (HV). In HG, feature point detection algorithm and mathematical morphology were used as the primary techniques, and the character texture and color information of vehicle license plate were extracted as the features to generate the candidates. In HV, gray projection technology and constant feature of vehicle license plate were used to verify the candidates from HG, then the correct license plate was located. The experimental results show that the proposed algorithm can achieve the localization success ratio of 96.6% and the precision of 95.4% in the testing image set in real environment. Moreover, the rationality and validity of the multi-feature fusion algorithm are verified.
Keywords:vehicle license plate detection   vehicle license plate location   multi-feature fusion   classifier   feature point detection
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号