首页 | 本学科首页   官方微博 | 高级检索  
     

基于混合卷积神经网络和循环神经网络的入侵检测模型
引用本文:方圆,李明,王萍,江兴何,张信明. 基于混合卷积神经网络和循环神经网络的入侵检测模型[J]. 计算机应用, 2018, 38(10): 2903-2907. DOI: 10.11772/j.issn.1001-9081.2018030710
作者姓名:方圆  李明  王萍  江兴何  张信明
作者单位:1. 国家电网 安徽省电力有限公司信息通信分公司, 合肥 230061;2. 中国科学技术大学 计算机科学与技术学院, 合肥 230027
基金项目:国家重点研发计划项目(017YFC0804402)。
摘    要:针对电力信息网络中的高级持续性威胁问题,提出一种基于混合卷积神经网络(CNN)和循环神经网络(RNN)的入侵检测模型。该模型根据网络数据流量的统计特征对当前网络状态进行分类。首先,获取日志文件中网络流量的各统计值,进行特征编码、归一化等预处理工作;然后,通过深度卷积神经网络中可变卷积核提取不同主机入侵流量之间空间相关特征;最后,将已经处理好的包含空间相关特征的数据在时间上错开排列,利用深度循环神经网络挖掘入侵流量的时间相关特征。实验结果表明,该模型相对于传统的机器学习模型在曲线下方的面积(AUC)上提升了7.5%~14.0%,同时误报率降低了83.7%~52.7%。所提模型能准确地识别网络流量的类别,大幅降低误报率。

关 键 词:高级持续性威胁  网络流量  卷积神经网络  循环神经网络  
收稿时间:2018-04-08
修稿时间:2018-06-04

Intrusion detection model based on hybrid convolutional neural network and recurrent neural network
FANG Yuan,LI Ming,WANG Ping,JIANG Xinghe,ZHANG Xinming. Intrusion detection model based on hybrid convolutional neural network and recurrent neural network[J]. Journal of Computer Applications, 2018, 38(10): 2903-2907. DOI: 10.11772/j.issn.1001-9081.2018030710
Authors:FANG Yuan  LI Ming  WANG Ping  JIANG Xinghe  ZHANG Xinming
Affiliation:1. Division of Information Communication, State Grid Anhui Electric Power Company Limited, Hefei Anhui 230061, China;2. School of Computer Science and Technology, University of Science and Technology of China, Hefei Anhui 230027, China
Abstract:Aiming at the problem of advanced persistent threats in power information networks, a hybrid Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) intrusion detection model was proposed, by which current network states were classified according to various statistical characteristics of network traffic. Firstly, pre-processing works such as feature encoding and normalization were performed on the network traffic obtained from log files. Secondly, spatial correlation features between different hosts' intrusion traffic were extracted by using deformable convolution kernels in CNN. Finally, the processed data containing spatial correlation features were staggered in time, and the temporal correlation features of the intrusion traffic were mined by RNN. The experimental results showed that the Area Under Curve (AUC) of the model was increased by 7.5% to 14.0% compared to traditional machine learning models, and the false positive rate was reduced by 83.7% to 52.7%. It indicates that the proposed model can accurately identify the type of network traffic and significantly reduce the false positive rate.
Keywords:advanced persistent threat   network traffic   convolutional neural network   recurrent neural network
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号