首页 | 本学科首页   官方微博 | 高级检索  
     

交叉反向学习和同粒社会学习的粒子群优化算法
引用本文:张新明,康强,王霞,程金凤. 交叉反向学习和同粒社会学习的粒子群优化算法[J]. 计算机应用, 2017, 37(11): 3194-3200. DOI: 10.11772/j.issn.1001-9081.2017.11.3194
作者姓名:张新明  康强  王霞  程金凤
作者单位:1. 河南师范大学 计算机与信息工程学院, 河南 新乡 453007;2. 河南省高校计算智能与数据挖掘工程技术研究中心, 河南 新乡 453007
基金项目:河南省重点科技攻关项目(132102110209);河南省基础与前沿技术研究计划项目(142300410295)。
摘    要:针对社会学习粒子群优化(SLPSO)算法存在的优化效率低、收敛速度慢等问题,提出了一种改进的SLPSO算法,即基于交叉反向学习和同粒社会学习的PSO算法(CPPSO)。首先,将最优解随机纵向交叉与一般反向学习以及随机反向学习构建交叉反向学习;然后,以此交叉反向学习策略更新种群中的最优粒子位置,增强探索能力,并克服SLPSO中最优粒子无更新导致效率低下的缺点;最后,对于非最优粒子,与SLPSO采用基于维的社会学习不同,均采用新型基于粒子的社会学习机制,在提高全局搜索能力同时,更提高开采能力和搜索效率。在一组不同维基准函数上优化的实验结果表明,CPPSO的优化性能、搜索效率和普适性大幅度领先于SLPSO和其他先进的PSO改进算法,如交叉搜索PSO (CSPSO)算法、自我调节的PSO (SRPSO)算法、异构综合学习的PSO (HCLPSO)算法和反向学习和局部学习能力的PSO (RLPSO)算法。

关 键 词:智能优化算法  粒子群优化算法  社会学习  反向学习  
收稿时间:2017-05-11
修稿时间:2017-05-24

Particle swarm optimization algorithm with cross opposition learning and particle-based social learning
ZHANG Xinming,KANG Qiang,WANG Xia,CHENG Jinfeng. Particle swarm optimization algorithm with cross opposition learning and particle-based social learning[J]. Journal of Computer Applications, 2017, 37(11): 3194-3200. DOI: 10.11772/j.issn.1001-9081.2017.11.3194
Authors:ZHANG Xinming  KANG Qiang  WANG Xia  CHENG Jinfeng
Affiliation:1. College of Computer and Information Engineering, Henan Normal University, Xinxiang Henan 453007, China;2. Engineering Technology Research Center for Computing Intelligence & Data Mining of Henan Province, Xinxiang Henan 453007, China
Abstract:In order to solve the problems of the Social Learning Particle Swarm Optimization (SLPSO) algorithm, such as slow convergence speed and low search efficiency, a Cross opposition learning and Particle-based social learning Particle Swarm Optimization (CPPSO) algorithm was proposed. Firstly, a cross opposition learning mechanism was formulated based on combining general opposition learning, random opposition learning and vertical random cross on the optimal solution. Secondly, the cross opposition learning was adopted for the optimal particle to improve the population diversity, exploration ability and avoid the disadvantage of SLPSO's slow convergence and low search efficiency. Finally, a novel social learning mechanism was adopted for the non-optimal particles in the particle swarm, and the new social learning method used particle-based approach, instead of the dimension-based one of SLPSO, not only improved the exploration capacity, but also improved exploitation and the optimization efficiency. The simulation results on a set of benchmark functions with different dimensions show that the optimization performance, search efficiency and generalizability of the CPPSO algorithm are much better than those of the SLPSO and the advanced PSO algorithms such as Crisscross Search PSO (CSPSO), Self-Regulating PSO (SRPSO), Heterogeneous Comprehensive Learning PSO (HCLPSO) and Reverse learning and Local learning PSO (RLPSO).
Keywords:intelligent optimization algorithm   Particle Swarm Optimization (PSO) algorithm   social learning   opposition learning
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号