首页 | 本学科首页   官方微博 | 高级检索  
     

边缘智能背景下的手写数字识别
引用本文:王建仁,马鑫,段刚龙,薛宏全. 边缘智能背景下的手写数字识别[J]. 计算机应用, 2019, 39(12): 3548-3555. DOI: 10.11772/j.issn.1001-9081.2019050869
作者姓名:王建仁  马鑫  段刚龙  薛宏全
作者单位:西安理工大学 经济与管理学院,西安 710054;西安理工大学 经济与管理学院,西安 710054;西安理工大学 经济与管理学院,西安 710054;西安理工大学 经济与管理学院,西安 710054
基金项目:陕西省重点学科资助项目(107-00X901)。
摘    要:随着边缘智能的快速发展,现有手写数字识别卷积网络模型的发展已越来越不适应边缘部署、算力下降的要求,且存在小样本泛化能力较差和网络训练成本较高等问题。借鉴卷积神经网络(CNN)经典结构、Leaky_ReLU算法、dropout算法和遗传算法及自适应和混合池化思想构建了基于LeNet-DL改进网络的手写数字识别模型,分别在大样本数据集MNIST和小样本真实数据集REAL上与LeNet、LeNet+sigmoid、AlexNet等算法进行对比实验。改进网络的大样本识别精度可达99.34%,性能提升约0.83%;小样本识别精度可达78.89%,性能提升约8.34%。实验结果表明,LeNet-DL网络相较于传统CNN在大样本和小样本数据集上的训练成本更低、性能更优且模型泛化能力更强。

关 键 词:边缘智能  卷积网络  手写数字识别  Leaky_ReLU  混合池化  自适应  dropout  遗传算法
收稿时间:2019-05-22
修稿时间:2019-07-02

Handwritten numeral recognition under edge intelligence background
WANG Jianren,MA Xin,DUAN Ganglong,XUE Hongquan. Handwritten numeral recognition under edge intelligence background[J]. Journal of Computer Applications, 2019, 39(12): 3548-3555. DOI: 10.11772/j.issn.1001-9081.2019050869
Authors:WANG Jianren  MA Xin  DUAN Ganglong  XUE Hongquan
Affiliation:College of Economics and Management, Xi'an University of Technology, Xi'an Shaanxi 710054, China
Abstract:With the rapid development of edge intelligence, the development of existing handwritten numeral recognition convolutional network models has become less and less suitable for the requirements of edge deployment and computing power declining, and there are problems such as poor generalization ability of small samples and high network training costs. Drawing on the classic structure of Convolutional Neural Network (CNN), Leaky_ReLU algorithm, dropout algorithm, genetic algorithm and adaptive and mixed pooling ideas, a handwritten numeral recognition model based on LeNet-DL improved convolutional neural network was constructed. The proposed model was compared on large sample MNIST dataset and small sample REAL dataset with LeNet, LeNet+sigmoid, AlexNet and other algorithms. The improved network has the large sample identification accuracy up to 99.34%, with the performance improvement of about 0.83%, and the small sample recognition accuracy up to 78.89%, with the performance improvement of about 8.34%. The experimental results show that compared with traditional CNN, LeNet-DL network has lower training cost, better performance and stronger model generalization ability on large sample and small sample datasets.
Keywords:edge intelligence  Convolutional Neural Network (CNN)  handwritten numeral recognition  Leaky_ReLU  mixing pooling  adaptive  dropout  genetic algorithm  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号