首页 | 本学科首页   官方微博 | 高级检索  
     

基于相空间重构的自适应残差修正支持向量回归预测算法
引用本文:李俊山,仝奇,叶霞,许元. 基于相空间重构的自适应残差修正支持向量回归预测算法[J]. 计算机应用, 2016, 36(11): 3229-3233. DOI: 10.11772/j.issn.1001-9081.2016.11.3229
作者姓名:李俊山  仝奇  叶霞  许元
作者单位:1. 东莞理工学院 城市学院, 广东 东莞 523419;2. 火箭军工程大学 信息工程系, 西安 710025;3. 中国人民解放军96261部队, 河南 灵宝 471700
基金项目:装备维修科学研究与改革项目。
摘    要:针对模拟电路故障预测存在的非线性时间序列预测问题和传统支持向量回归(SVR)多步预测时出现的误差累积问题,提出了一种基于相空间重构的自适应残差修正SVR预测算法。首先,分析了SVR多步预测方法对时间序列趋势预测的意义和多步预测导致的误差积累问题;其次,将相空间重构技术引入SVR预测中,对表征模拟电路状态的时间序列进行相空间重构,并进而进行SVR预测;然后,在对多步预测过程中产生的误差累积序列进行二次SVR预测的基础上,实现对初始预测误差的自适应修正;最后,对所提算法进行了预测仿真验证。仿真验证和模拟电路的健康度预测实验结果表明,所提算法能有效降低多步预测导致的误差积累,显著提高回归估计精度,更好地预测模拟电路状态的变化趋势。

关 键 词:支持向量回归  多步预测  误差累积  相空间重构  残差  
收稿时间:2016-04-19
修稿时间:2016-06-30

Adaptive residual error correction support vector regression prediction algorithm based on phase space reconstruction
LI Junshan,TONG Qi,YE Xia,XU Yuan. Adaptive residual error correction support vector regression prediction algorithm based on phase space reconstruction[J]. Journal of Computer Applications, 2016, 36(11): 3229-3233. DOI: 10.11772/j.issn.1001-9081.2016.11.3229
Authors:LI Junshan  TONG Qi  YE Xia  XU Yuan
Affiliation:1. City College, Dongguan University of Technology, Dongguan Guangdong 523419, China;2. Department of Information Engineering, Rocket Force University of Engineering, Xi'an Shaanxi 710025, China;3. 96261 Unit of PLA, Lingbao Henan 471700, China
Abstract:Focusing on the problem of nonlinear time series prediction in the field of analog circuit fault prediction and the problem of error accumulation in traditional Support Vector Regression (SVR) multi-step prediction, a new adaptive SVR prediction algorithm based on phase space reconstruction was proposed. Firstly, the significance of SVR multi-step prediction method for time series trend prediction and the error accumulation problem caused by multi-step prediction were analyzed. Secondly, phase space reconstruction technique was introduced into SVR prediction, the phase space of the time series of the analog circuit state was reconstructed, and then the SVR prediction was carried out. Thirdly, on the basis of the two SVR prediction of the error accumulated sequence generated in the multi-step prediction process, the adaptive correction of the initial prediction error was realized. Finally, the proposed algorithm was simulated and verified. The simulation verification results and experimental results of the health degree prediction of the analog circuit show that the proposed algorithm can effectively reduce the error accumulation caused by multi-step prediction, and significantly improve the accuracy of regression estimation, and better predict the change trend of analog circuit state.
Keywords:Support Vector Regression (SVR)   multi-step prediction   error accumulation   phase space reconstruction   residual
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号