首页 | 本学科首页   官方微博 | 高级检索  
     


Manganese concentrations in the air of the Montreal (Canada) subway in relation to surface automobile traffic density
Authors:Boudia Nacéra  Halley Renée  Kennedy Greg  Lambert Jean  Gareau Lise  Zayed Joseph
Affiliation:GRIS (Interdisciplinary Health Research Group), University of Montreal, Canada.
Abstract:Methylcyclopentadienyl manganese tricarbonyl (MMT) is an organic derivative of manganese (Mn), used since 1976 in Canadian gasoline as an octane enhancer. Its combustion leads to the emission of Mn particles. Several studies carried out by our research group have established a correlation between atmospheric Mn concentrations and automobile traffic density, suggesting that MMT in gasoline could play a significant role. This study aims to measure Mn concentrations in the air of the underground subway in Montreal (Canada) and to examine the relation with nearby surface automobile traffic density and, by extension, with the use of MMT in gasoline. Three subway stations were chosen for their location in different microenvironments with different traffic densities. Respirable (MnR<5 microm) and total Mn (MnT) were sampled over two weeks, 5 days/week, 12 h/day. For the station located in the lower traffic density area, relatively low levels of MnR and MnT were found, with averages of 0.018 and 0.032 microg/m(3), respectively. These concentrations are within the range of the background levels in Montreal. For the other two stations, the average concentrations of MnR were twice as high and exceeded the US EPA reference concentration of 0.05 microg/m(3). Although there may be several sources of Mn from different components of the subway structure and vehicles, no correlation was found between subway traffic and atmospheric Mn in the subway. Since the air in the underground subway is pumped directly from outside without filtration, our findings strongly suggest that the combustion of MMT in automobiles is an important factor.
Keywords:Manganese   Subway   Traffic density   Respirable particles   MMT sources
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号