首页 | 本学科首页   官方微博 | 高级检索  
     


Reexamination of tympanic membrane temperature as a core temperature
Authors:KT Sato  NL Kane  G Soos  CV Gisolfi  N Kondo  K Sato
Affiliation:Marshall Dermatology Research Laboratories, Department of Dermatology, University of Iowa College of Medicine, Iowa City 52242, USA.
Abstract:Controversies surrounding tympanic temperature (Tty) itself and techniques for measuring it have dampened the potential usefulness of Tty in determining core temperature (operationally defined here as the body temperature taken at a deep body site). The present study was designed to address the following questions. 1) Can a tympanic membrane probe be made that is safer and more reliable than its predecessors? 2) Why is the effect of facial cooling and heating on Tty so inconsistent in reports from different laboratories? 3) Is Tty still useful as a measure of core temperature? Data from this study, obtained with a modified thermocouple probe, suggest that the widely reported facial skin cooling effect on Tty is most probably due to thermal contamination from the surrounding ear canal wall and/or suboptimal contact of the probe sensor with the tympanic membrane because 1) Tty that fell during facial cooling was increased to the precooling level by the repositioning of the probe sensor; 2) Tty determined by using a probe with a larger sensor area (the sensor soldered to a steel wire ring)tended to fall in response to facial cooling, whereas Tty determined with a thermally insulated probe ring did not; and 3) Tty obtained under careful positioning of the insulated probe was relatively insensitive to facial cooling or heating. Because Tty was practically identical to esophageal temperature (Tes) in the steady state, i.e., 36.83 +/- 0.20 (SD) degrees C for Tty and 36.87 +/- 0.16 degrees C for Tes at room temperature (n = 11), and because facial cooling had little effect on both Tty and Tes (36.86 +/- 0.17 degrees C for Tty and 36.86 +/- 0.26 degrees C for Tes during facial or scalp skin cooling), we support the postulate that Tty is a good measure of core temperature. The temperature transient in response to foot warming was detected 5 min (n = 2) faster with Tty than with Tes. Thus, with further improvements in the design of the probe. Tty can become a standard for determination of core body temperature.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号