首页 | 本学科首页   官方微博 | 高级检索  
     


Stable discretization of poroelasticity problems and efficient preconditioners for arising saddle point type matrices
Authors:Owe Axelsson  Radim Blaheta  Petr Byczanski
Affiliation:1. King Abdulaziz University, Jeddah, Saudi Arabia
2. Institute of Geonics AS CR, IT4 Innovations, Ostrava, The Czech Republic
Abstract:Poroelastic models arise in reservoir modeling and many other important applications. Under certain assumptions, they involve a time-dependent coupled system consisting of Navier–Lamé equations for the displacements, Darcy’s flow equation for the fluid velocity and a divergence constraint equation. Stability for infinite time of the continuous problem and, second and third order accurate, time discretized equations are shown. Methods to handle the lack of regularity at initial times are discussed and illustrated numerically. After discretization, at each time step this leads to a block matrix system in saddle point form. Mixed space discretization methods and a regularization method to stabilize the system and avoid locking in the pressure variable are presented. A certain block matrix preconditioner is shown to cluster the eigenvalues of the preconditioned matrix about the unit value but needs inner iterations for certain matrix blocks. The strong clustering leads to very few outer iterations. Various approaches to construct preconditioners are presented and compared. The sensitivity of the number of outer iterations to the stopping accuracy of the inner iterations is illustrated numerically.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号