首页 | 本学科首页   官方微博 | 高级检索  
     


Hydrogen production using sono-biohydrogenator
Authors:Elsayed ElbeshbishyHisham Hafez  George Nakhla
Affiliation:Dept. of Civil and Environmental Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
Abstract:Hydrogen production in a novel sonicated biological hydrogen reactor (SBHR) was investigated and compared with a continuous stirred tank reactor (CSTR). The two systems were operated at a hydraulic retention time (HRT) of 12 h and two organic loading rates (OLRs) of 21.4 and 32.1 g COD/L.d. The average hydrogen production rates per unit reactor volume for the conventional CSTR were 2.6 and 2.8 L/L.d, as compared with 4.8 and 5.6 L/L.d for SBHR, at the two OLRs, respectively. Hydrogen yields of 1.2 and 1.0 mol H2/mol glucose were observed for the CSTR, respectively, while for the SBHR, the hydrogen yields were 2.1 and 1.9 mol H2/mol glucose at the two OLRs, respectively. The hydrogen content in the SBHR’s headspace was higher than that in CSTR by 10% and 31% at OLRs of 21.4 and 32.1 g COD/L.d, respectively. Both glucose conversion efficiency and HAc/HBu ratio in the SBHR were higher than in the conventional CSTR at both OLRs. The biomass yield of about 0.32 g VSS/g COD observed in the CSTR and 0.23 g VSS/g COD in the SBHR substantiate the higher H2 yield in the SBHR. DGGE analysis confirmed the specificity of the microbial hydrogen-producing culture in the SBHR, with two different hydrogen producers (Clostridium sp. and Citrobacter freundii) detected in the SBHR and not detected in the CSTR.
Keywords:Biological hydrogen production  Ultrasound  Hydrogen yield  Biomass yield
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号