首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis of a macroporous silica‐based derivative of pyridine material and its application in separation of palladium
Authors:Anyun Zhang  Xiaoyu Wang  Zhifang Chai
Affiliation:1. Dept. of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027, P.R. China;2. Shaanxi Coalfield Geological Bureau General Test Lab, Xi'an 710054, P.R. China
Abstract:A novel macroporous silica‐based 2,6‐bis(5,6‐dibutyl‐1,2,4‐triazine‐3‐yl)pyridine (BDBTP) material, BDBTP/SiO2‐P, was prepared through impregnation and immobilization of BDBTP and octanol into the pores of the SiO2‐P particles. The adsorption of 10 typical fission and nonfission elements contained in highly active liquid waste (HLW) onto BDBTP/SiO2‐P was investigated by examining the effect of contact time and the HNO3 concentration in the range of 0.1–5.0 M. Pd(II), a weak Lewis acid and an electron‐pair acceptor, was strongly complexed with nitrogen, a weak Lewis base and an electron‐pair donor. BDBTP/SiO2‐P showed excellent adsorption ability and high selectivity for Pd(II) over all the tested metals. The separation of Pd(II) from a simulated HLW was performed by BDBTP/SiO2‐P packed column. Pd(II) was effectively eluted with 0.2 M thiourea and separated from the others. It demonstrated that in HNO3, application of the macroporous silica‐based BDBTP/SiO2‐P material in partitioning and recovery of Pd(II) from HLW is promising. © 2010 American Institute of Chemical Engineers AIChE J, 2010
Keywords:synthesis  macroporous silica‐based composite  separation  palladium  highly active liquid waste
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号