首页 | 本学科首页   官方微博 | 高级检索  
     


Antireflective Nanoparticle Arrays Enhance the Efficiency of Silicon Solar Cells
Authors:Dehui Wan  Hsuen‐Li Chen  Te‐Chen Tseng  Cheng‐Yi Fang  Yu‐Shen Lai  Fang‐Yao Yeh
Affiliation:1. Department of Materials Science and Engineering, National Taiwan University, Taipei (Taiwan);2. National Nano Device Laboratory, Hsinchu (Taiwan);3. Photovoltaic Technology Center, Industrial Technology Research Institute, Hsinchu (Taiwan)
Abstract:In this study, the phenomenon of light trapping in Si solar cells coated with metal (Au) and dielectric (TiO2, SiO2) nanoparticles (NPs) is systematically investigated. In contrast to previous reports, herein it is proposed that the photocurrent enhancement of solar cells should be attributed to the limited antireflection ability of the Au NP arrays. In other words, the Au NP arrays might not enhance the absorption of the active layer in cells when no light is reflected from the air–substrate interface. Therefore, the Au NPs are replaced with dielectric NPs, which possess lower extinction coefficients, and then the antireflection property of the TiO2 NP arrays is optimized. A simple, rapid, and cheap solution‐based method is used to prepare close‐packed TiO2 NP films on Si solar cells; these devices exhibit a uniform and remarkable increase (ca. 30%) in their photocurrents. To the best of the authors’ knowledge, this uniform photocurrent enhancement is greater than those obtained from previously reported metal and dielectric NP–enhanced Si wafer‐based solar cells.
Keywords:dielectric nanoparticles  antireflective nanoparticles  surface plasmon resonance  solar cells  silicon
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号