首页 | 本学科首页   官方微博 | 高级检索  
     


Cohesiveness and hydrodynamic properties of young drinking water biofilms
Authors:Abe Yumiko  Skali-Lami Salaheddine  Block Jean-Claude  Francius Grégory
Affiliation:a Laboratoire de Chimie Physique et Microbiologie pour l’Environnement (LCPME), UMR 7564, Nancy-Université, CNRS, 405 rue de Vandœuvre, 54600 Villers-lès-Nancy, France
b Laboratoire d’Energétique et de Mécanique Théorique et Appliquée (LEMTA), UMR 7563, Nancy-Université, CNRS, 2 avenue de la Forêt de Haye, BP 160, 54504 Vandœuvre-lès-Nancy, France
Abstract:Drinking water biofilms are complex microbial systems mainly composed of clusters of different size and age. Atomic force microscopy (AFM) measurements were performed on 4, 8 and 12 weeks old biofilms in order to quantify the mechanical detachment shear stress of the clusters, to estimate the biofilm entanglement rate ξ. This AFM approach showed that the removal of the clusters occurred generally for mechanical shear stress of about 100 kPa only for clusters volumes greater than 200 μm3. This value appears 1000 times higher than hydrodynamic shear stress technically available meaning that the cleaning of pipe surfaces by water flushing remains always incomplete. To predict hydrodynamic detachment of biofilm clusters, a theoretical model has been developed regarding the averaging of elastic and viscous stresses in the cluster and by including the entanglement rate ξ. The results highlighted a slight increase of the detachment shear stress with age and also the dependence between the posting of clusters and their volume. Indeed, the experimental values of ξ allow predicting biofilm hydrodynamic detachment with same order of magnitude than was what reported in the literature. The apparent discrepancy between the mechanical and the hydrodynamic detachment is mainly due to the fact that AFM mechanical experiments are related to the clusters local properties whereas hydrodynamic measurements reflected the global properties of the whole biofilm.
Keywords:Biofilm   Drinking water   AFM   Elasticity   Cohesiveness   Hydrodynamic   Shear stress
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号