首页 | 本学科首页   官方微博 | 高级检索  
     

改进粒子群算法在梯级水电站优化调度研究中的应用
引用本文:吴月秋,纪昌明,郑江涛. 改进粒子群算法在梯级水电站优化调度研究中的应用[J]. 电网与水力发电进展, 2011, 27(12): 38-43
作者姓名:吴月秋  纪昌明  郑江涛
作者单位:华北电力大学可再生能源学院新能源与可再生能源北京市重点实验室,北京,102206
基金项目:国家自然科学基金项目(51179069);国家自然科学基金项目(51179130)
摘    要:针对梯级电站优化调度具有多阶段、非线性和组合性的特点,采用改进粒子群算法来求解。针对目前采用的基本粒子群算法在求解时存在易陷入局部最优和早熟的缺点,改进粒子群算法以混沌变量生成机制来增加种群的多样性,以逐步优化和随机生成相结合的方法生成初始种群,以增加粒子生成的有效性。实例计算结果表明,改进粒子群算法可以取得较好的效果,并为梯级电站优化调度提供了一种有效的方法。

关 键 词:梯级水电站  优化调度  改进粒子群算法

Application of Improved Particle Swarm Algorithm in Optimal Scheduling of Cascade Hydropower Stations
WU Yue-qiu,JI Chang-ming and ZHENG Jiang-tao. Application of Improved Particle Swarm Algorithm in Optimal Scheduling of Cascade Hydropower Stations[J]. Advance of Power System & Hydroelectric Engineering, 2011, 27(12): 38-43
Authors:WU Yue-qiu  JI Chang-ming  ZHENG Jiang-tao
Affiliation:(The New and Renewable Energy of Beijing Key Laboratory, School of Renewable Energy, North China Electric Power University, Beijing 102206,China)
Abstract:In order to solve multi-dimensional, dynamic, nonlinear and other difficult problems of the cascaded hydroelectric optimized scheduling, this paper adopts improved particle swarm optimization (PSO). To avoid the local optimization and prematurity of the PSO algorithm, the generation mechanism of chaotic variables are introduced to increase the diversity of particles, and the method of combing gradual optimization and random generation is used to generate the initial population to increase the effectiveness of particle generation. A study case of cascade reservoirs shows that better results can be achieved with the improved PSO. Therefore, it provides a new and efficient method for Cascade Hydropower Station operation scheduling.
Keywords:cascade hydropower stations   optimal scheduling   improved particle swarm algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电网与水力发电进展》浏览原始摘要信息
点击此处可从《电网与水力发电进展》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号