首页 | 本学科首页   官方微博 | 高级检索  
     

一种虹膜色素块检测与分类方法
引用本文:刘笑楠,苑玮琦,张波. 一种虹膜色素块检测与分类方法[J]. 沈阳工业大学学报, 2014, 36(6): 688-693. DOI: 10.7688/j.issn.1000-1646.2014.06.17
作者姓名:刘笑楠  苑玮琦  张波
作者单位:沈阳工业大学 视觉检测技术研究所, 沈阳 110870
基金项目:国家自然科学基金资助项目(61271365).
摘    要:针对现有虹膜识别系统中全局纹理特征提取方法忽略了纹理类型信息的问题,提出了一种针对全局性纹理中虹膜色素块的检测与分类方法.该方法利用灰度聚类法实现虹膜图像中色素块可能存在区域的初定位,依据坑洞和色素斑这两类色素块的灰度空间分布特性,定义一组区域特征参数作为分类特征向量,利用支持向量机实现二者的检测与分类.算法对图库中图像的坑洞和色素斑的检测正确率分别为99.2%和86.5%,对无特征纹理存在的虹膜图像检测正确率为87.2%.实验结果表明,该方法具有较高的正确率,能够满足虹膜识别系统的纹理特征提取要求.

关 键 词:虹膜识别  纹理检测  全局纹理  虹膜色素块  坑洞  色素斑  区域特征参数  支持向量机  

A detection and classification method for iris pigment block
LIU Xiao-nan,YUAN Wei-qi,ZHANG Bo. A detection and classification method for iris pigment block[J]. Journal of Shenyang University of Technology, 2014, 36(6): 688-693. DOI: 10.7688/j.issn.1000-1646.2014.06.17
Authors:LIU Xiao-nan  YUAN Wei-qi  ZHANG Bo
Affiliation:Computer Vision Institute, Shenyang University of Technology, Shenyang 110870, China
Abstract:In order to solve the problem that the global texture feature extraction methods in the existing iris recognition system ignore the information of texture types, a detection and classification method for iris pigment blocks based on global texture was proposed. The initial location of probably existing regions of pigment blocks in the iris images was realized with a gray cluster method. According to the gray spatial distribution characteristics of two pigment blocks including plaques and crypts, a set of region feature parameters were defined as the classification feature vector. In addition, the detection and classification of iris plaques and crypts were realized by a support vector machine. The detection accuracy for crypts and plaques of images in the gallery are 99.2% and 86.5%, respectively. Moreover, the detection accuracy of iris images without any feature textures is 87.2%. The experimental results show that the proposed method has higher detection accuracy, and can meet the requirement of texture feature extraction in the iris recognition system.
Keywords:iris recognition  texture detection  global texture  iris pigment block  crypt  plaque  region feature parameter  support vector machine
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《沈阳工业大学学报》浏览原始摘要信息
点击此处可从《沈阳工业大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号