首页 | 本学科首页   官方微博 | 高级检索  
     


An adaptive PNN-DS approach to classification using multi-sensor information fusion
Authors:Chen  Ning  Sun  Fuchun  Ding  Linge  Wang  Hongqiao
Affiliation:1.Department of Computer Science and Technology, Tsinghua University, 100084, Beijing, China
;
Abstract:

In this paper, an adaptive neural network approach to classification which combines modified probabilistic neural network and D-S evidence theory (PNN-DS) is proposed. It attempts to deal with the drawbacks of information uncertainty and imprecision using single classification algorithm. This PNN-DS approach firstly adopts a modified probabilistic neural network (PNN) to obtain posteriori probabilities and make a primary classification decision in feature-level fusion. Then posteriori probabilities are transformed to masses noting the evidence of the D-S evidential theory. Finally advanced D-S evidential theory is utilized to gain more accurate classification results in the last decision-level fusion. In order to implement PNN-DS, covariance matrices are firstly employed in the modified PNN module to replace the singular smoothing factor in the PNN’s kernel function, and linear function is utilized in the pattern of summation layer. Secondly, the whole scheme of the proposed approach is explained in depth. Thirdly, three classification experiments are carried out on the proposed approach and a large amount of comparable analyses are done to demonstrate the effectiveness and robustness of the proposed approach. Experiments reveal that the PNN-DS outperforms BPNN-DS, which provides encouraging results in terms of classification accuracy and the speed of learning convergence.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号