首页 | 本学科首页   官方微博 | 高级检索  
     

基于近红外高光谱成像技术的宁夏羊肉产地鉴别
引用本文:王靖, 丁佳兴, 郭中华, 何凤杰, 梁晓燕. 基于近红外高光谱成像技术的宁夏羊肉产地鉴别[J]. 食品工业科技, 2018, 39(2): 250-254,260. DOI: 10.13386/j.issn1002-0306.2018.02.047
作者姓名:王靖  丁佳兴  郭中华  何凤杰  梁晓燕
作者单位:1. 宁夏大学物理与电子电气工程学院, 宁夏银川 750021;2. 宁夏大学农学院, 宁夏银川 750021
基金项目:宁夏大学研究生创新研究项目(GIP2017010)。国家自然科学基金(61565014)
摘    要:使用900~1700 nm高光谱成像系统采集宁夏银川、固原、盐池三个不同产地的绵羊后腿样本的近红外高光谱数据,对光谱采用面积归一化方法预处理,利用SPA、CARS、UVE算法对预处理后的光谱数据提取特征波长分别为17、40、121个;结合PLS-DA及KNN建立特征波段下的判别模型。结果表明KNN判别模型效果较差,3种特征波长中利用CARS提取的特征波长建模效果最佳,代替全光谱建立PLS-DA判别模型是可行的;综合对比模型效果,CARS-PLS-DA为最优模型,校正集正确率90.48%,预测集正确率84.21%。证明利用近红外高光谱成像技术对羊肉产地鉴别是可行的。

关 键 词:高光谱成像技术  羊肉  偏最小二乘判别分析  K最近邻分类算法  鉴别
收稿时间:2017-06-26

Identification of geographical origins of mutton in Ningxia based on the near infrared hyperspectral imaging technique
WANG Jing, DING Jia-xing, GUO Zhong-hua, HE Feng-jie, LIANG Xiao-yan. Identification of geographical origins of mutton in Ningxia based on the near infrared hyperspectral imaging technique[J]. Science and Technology of Food Industry, 2018, 39(2): 250-254,260. DOI: 10.13386/j.issn1002-0306.2018.02.047
Authors:WANG Jing  DING Jia-xing  GUO Zhong-hua  HE Feng-jie  LIANG Xiao-yan
Affiliation:1. School of Physics and Electrical and Electronic Engineering, Ningxia University, Yinchuan 750021, China;2. School of Agriculture, Ningxia University, Yinchuan 750021, China
Abstract:Near-infrared hyperspectral imaging system that was ranging from 900 nm to 1700 nm was used to collect near-infrared hyperspectral data of the sheep hind leg samples from three different habitats in Yinchuan,Guyuan and Yanchi of Ningxia province. The spectral normalization method was used to pre-treat the spectrum. The spectral data of the characteristic wavelengths extracted from the pretreatment were 17,40,121 respectively. Using SPA,CARS and UVE,and the discriminant model under the characteristic band was established by combining PLS-DA and KNN. The results showed that the KNN discriminant models were less effective. It was feasible to construct the PLS-DA discriminant model instead of the whole spectrum using the best characteristic of the characteristic wavelengths extracted by CARS. Compared with the model effect,CARS-PLS-DA was the optimal model,the correctness of the calibration set was 90.48%,and the correctness of the forecast set was 84.21%. It was proved that it was feasible to identify the mutton place of origin by near infrared spectroscopy.
Keywords:hyperspectral imaging technology  mutton  PLS-DA  KNN  identification
本文献已被 CNKI 等数据库收录!
点击此处可从《食品工业科技》浏览原始摘要信息
点击此处可从《食品工业科技》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号