首页 | 本学科首页   官方微博 | 高级检索  
     

基于MCCV-CARS-RF建立红提糖度和酸度的可见-近红外光谱无损检测方法
引用本文:许锋,付丹丹,王巧华,肖壮,王彬. 基于MCCV-CARS-RF建立红提糖度和酸度的可见-近红外光谱无损检测方法[J]. 食品科学, 2018, 39(8): 149-154. DOI: 10.7506/spkx1002-6630-201808024
作者姓名:许锋  付丹丹  王巧华  肖壮  王彬
作者单位:(华中农业大学工学院,湖北?武汉 430070)
基金项目:湖北省自然科学基金项目(012FKB02910);湖北省研究与开发计划项目(2011BHB016)
摘    要:利用USB2000+微型光谱仪采集红提400~1?000?nm透过率光谱数据,并通过理化分析测得糖度和酸度值;利用SavitZky-Golay卷积平滑法对原始光谱进行预处理,结合蒙特卡罗交叉验证法剔除奇异点,再利用竞争自适应重加权采样法降维,最终建立随机森林预测模型。糖度预测模型的校正集相关系数和均方根误差分别为0.955?8和0.315?8;验证集相关系数和均方根误差为0.956?8和0.318?5。酸度预测模型的校正集相关系数和均方根误差分别是0.945?6和0.300?1;验证集相关系数和均方根误差为0.940?5和0.311?2。结果表明,该方法适用于红提糖度和酸度的快速无损检测,且具有较高的准确度。

关 键 词:可见-近红外光谱  蒙特卡罗交叉验证法  竞争自适应重加权采样法  红提  糖度  酸度  

Nondestructive Detection of Sugar Content and Acidity in Red Globe Table Grapes Using Visible Near Infrared Spectroscopy Based on Monte-Carlo Cross Validation-Competitive Adaptive Reweighted Sampling-Random Forest (MCCV-CARS-RF)
XU Feng,FU Dandan,WANG Qiaohua,XIAO Zhuang,WANG Bin. Nondestructive Detection of Sugar Content and Acidity in Red Globe Table Grapes Using Visible Near Infrared Spectroscopy Based on Monte-Carlo Cross Validation-Competitive Adaptive Reweighted Sampling-Random Forest (MCCV-CARS-RF)[J]. Food Science, 2018, 39(8): 149-154. DOI: 10.7506/spkx1002-6630-201808024
Authors:XU Feng  FU Dandan  WANG Qiaohua  XIAO Zhuang  WANG Bin
Affiliation:(College of Engineering, Huazhong Agricultural University, Wuhan 430070, China)
Abstract:A USB2000+ micro spectrometer was used to acquire the transmittance spectra of Red Globe table grapes in the range of 400–1 000 nm. Moreover, the sugar content and acidity value were measured chemically. The original spectra were pretreated by SavitZky-Golay smoothing (SG) and then the singularity was eliminated by Monte-Carlo cross validation method (MCCV) followed by dimension reduction by competitive adaptive reweighted sampling for development of a random forest (RF) prediction model. The correlation coefficient and root mean square error of the sugar prediction model were 0.955 8 and 0.315 8 for the calibration set, and 0.956 8 and 0.318 5 for the validation set, respectively. The correlation coefficient and root mean square error of the acidity prediction model were 0.945 6 and 0.300 1 for the calibration set, and 0.940 5 and 0.311 2 for the validation set, respectively. The results showed that this method could be suitable for rapid, nondestructive and accurate detection of sugar content and acidity in Red Globe table grapes.
Keywords:visible near infrared spectroscopy  Monte-Carlo cross validation  competitive adaptive weighting sampling  Red Globe table grape  sugar content  acidity  
本文献已被 CNKI 等数据库收录!
点击此处可从《食品科学》浏览原始摘要信息
点击此处可从《食品科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号