首页 | 本学科首页   官方微博 | 高级检索  
     


High pressure–low temperature processing of beef: Effects on survival of internalized E. coli O157:H7 and quality characteristics
Affiliation:1. Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA;2. Seafood Research and Education Center, Oregon State University, Astoria, OR, USA;1. Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, P.O. Box 7028, SE-75007 Uppsala, Sweden;2. Department of Biosystem and Technology, Swedish University of Agricultural Sciences, P.O. Box 103, SE-230 53 Alnarp, Sweden;3. Division of Risk and Benefit Assessment, National Food Agency, SE-75126 Uppsala, Sweden;4. Department of Microbiology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
Abstract:High pressure–low temperature (HPLT) processing was investigated to achieve Escherichia coli O157:H7 inactivation in non-intact, whole muscle beef while maintaining acceptable quality characteristics. Beef semitendinosus was internally inoculated with a four strain E. coli O157:H7 cocktail and frozen to ? 35 °C, then subjected to 551 MPa for 4 min (HPLT). Compared to frozen, untreated control (F), HPLT reduced microbial population by 1.7 log colony forming units (CFU)/g on selective media and 1.4 log on non-selective media. High pressure without freezing (551 MPa/4 min/3 °C) increased pH and lightness while decreasing redness, cook yield, tenderness, and protein solubility. Aside from a 4% decrease in cook yield, HPLT, had no significant effects on quality parameters. It was demonstrated that HPLT treatment reduces internalized E. coli O157:H7 with minimal effect on quality factors, meaning it may have a potential role in reducing the risk associated with non-intact red meat.Industrial relevanceIn the current work, high pressure (551 MPa, 4 min) was applied to beef semitendinosus while it was at subfreezing temperatures (<? 30 °C). Most studies utilizing this high pressure–low temperature (HPLT) process employ subzero capable thermostatic high pressure equipment, which currently has no commercial equivalent. Successful HPLT runs were completed in this study using more conventional temperature control (1–3 °C) on pilot scale (20 L) high pressure processing equipment. The process yielded E. coli O157:H7 reductions of 1.4–1.7 log colony forming units (CFU)/g, which, while lower than conventional high pressure processing (HPP), may be sufficient to eliminate O157 populations typical of non-intact, whole muscle beef. Various quality factors, including color, purge losses and cooked tenderness, were unaffected by HPLT, while an equivalent HPP process at nonfreezing temperatures (551 MPa, 3 °C) induced color change (loss of redness), increased cook losses and decreased cooked tenderness compared to the control and HPLT beef. Producers of non-intact, whole muscle (blade tenderized or brine injected) meat, especially those that ship and sell frozen products, may look to HPLT processes to improve food safety.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号