首页 | 本学科首页   官方微博 | 高级检索  
     


A DFT study of methanol oxidation on Co3O4
Affiliation:1. College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong 037009, Shanxi Province, PR China;2. Department of Chemistry, Tianjin Key Lab of Metal and Molecule-based Material Chemistry, Nankai University, Tianjin 300071, PR China;3. State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China
Abstract:By means of spin polarized density functional theory with the GGA + U framework, the reaction mechanism of CH3OH oxidation on the Co3O4 (110)-B and (111)-B surfaces has been investigated. Adsorption situation and a part of reaction cycle for CH3OH oxidation are clarified. Our results indicated that: i) U value can affect the calculated energetic result significantly; ii) CH3OH can adsorb with surface lattice oxygen atom (O2f/O3f) to form Cosingle bondO bond directly, and the adsorption of CH3OH and its decomposition products on (110)-B is more stable than on (111)-B, which means CH3OH prefers Co3 + better than Co2 +; iii) on the (110)-B surface, CH3OH can form CO2, H2O and adsorbed H atom. But on the (111)-B surface, CH3OH can just form formaldehyde (CH2O) and adsorbed H atom, this means oxidative capacity of (110)-B (Co3 +) is higher than (111)-B (Co2 +). The possible reasons corresponding to the high oxidative of (110)-B come from both Co3 + and O2f: Co3 + tends to bind adsorbed species for further decomposition and O2f tends to bind more hydrogenation atom involved in methanol due to its low-coordinates number compared to that of O3f.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号